These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 9801388)

  • 1. Synaptic integration in striate cortical simple cells.
    Hirsch JA; Alonso JM; Reid RC; Martinez LM
    J Neurosci; 1998 Nov; 18(22):9517-28. PubMed ID: 9801388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic Contributions to Receptive Field Structure and Response Properties in the Rodent Lateral Geniculate Nucleus of the Thalamus.
    Suresh V; Çiftçioğlu UM; Wang X; Lala BM; Ding KR; Smith WA; Sommer FT; Hirsch JA
    J Neurosci; 2016 Oct; 36(43):10949-10963. PubMed ID: 27798177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex.
    Anderson JS; Carandini M; Ferster D
    J Neurophysiol; 2000 Aug; 84(2):909-26. PubMed ID: 10938316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Anatomically Constrained Model of V1 Simple Cells Predicts the Coexistence of Push-Pull and Broad Inhibition.
    Taylor MM; Contreras D; Destexhe A; Frégnac Y; Antolik J
    J Neurosci; 2021 Sep; 41(37):7797-7812. PubMed ID: 34321313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptive field structure varies with layer in the primary visual cortex.
    Martinez LM; Wang Q; Reid RC; Pillai C; Alonso JM; Sommer FT; Hirsch JA
    Nat Neurosci; 2005 Mar; 8(3):372-9. PubMed ID: 15711543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-clamp measurement of visually-evoked conductances with whole-cell patch recordings in primary visual cortex.
    Borg-Graham L; Monier C; Frégnac Y
    J Physiol Paris; 1996; 90(3-4):185-8. PubMed ID: 9116665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition in Simple Cell Receptive Fields Is Broad and OFF-Subregion Biased.
    Taylor MM; Sedigh-Sarvestani M; Vigeland L; Palmer LA; Contreras D
    J Neurosci; 2018 Jan; 38(3):595-612. PubMed ID: 29196320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression.
    Chung S; Ferster D
    Neuron; 1998 Jun; 20(6):1177-89. PubMed ID: 9655505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex.
    Pei X; Vidyasagar TR; Volgushev M; Creutzfeldt OD
    J Neurosci; 1994 Nov; 14(11 Pt 2):7130-40. PubMed ID: 7965103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic physiology and receptive field structure in the early visual pathway of the cat.
    Hirsch JA
    Cereb Cortex; 2003 Jan; 13(1):63-9. PubMed ID: 12466216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A possible basic cortical microcircuit called "cascaded inhibition." Results from cortical network models and recording experiments from striate simple cells.
    Wörgötter F; Nelle E; Li B; Wang L; Diao Y
    Exp Brain Res; 1998 Oct; 122(3):318-32. PubMed ID: 9808305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms underlying cross-orientation suppression in cat visual cortex.
    Priebe NJ; Ferster D
    Nat Neurosci; 2006 Apr; 9(4):552-61. PubMed ID: 16520737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity.
    Wörgötter F; Koch C
    J Neurosci; 1991 Jul; 11(7):1959-79. PubMed ID: 2066770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons.
    Bringuier V; Chavane F; Glaeser L; Frégnac Y
    Science; 1999 Jan; 283(5402):695-9. PubMed ID: 9924031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direction selectivity of synaptic potentials in simple cells of the cat visual cortex.
    Jagadeesh B; Wheat HS; Kontsevich LL; Tyler CW; Ferster D
    J Neurophysiol; 1997 Nov; 78(5):2772-89. PubMed ID: 9356425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local intracortical connections in the cat's visual cortex: postnatal development and plasticity.
    Ghose GM; Freeman RD; Ohzawa I
    J Neurophysiol; 1994 Sep; 72(3):1290-303. PubMed ID: 7807212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic origin and stimulus dependency of neuronal oscillatory activity in the primary visual cortex of the cat.
    Bringuier V; Frégnac Y; Baranyi A; Debanne D; Shulz DE
    J Physiol; 1997 May; 500 ( Pt 3)(Pt 3):751-74. PubMed ID: 9161989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The contribution of spike threshold to the dichotomy of cortical simple and complex cells.
    Priebe NJ; Mechler F; Carandini M; Ferster D
    Nat Neurosci; 2004 Oct; 7(10):1113-22. PubMed ID: 15338009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity-dependent regulation of 'on' and 'off' responses in cat visual cortical receptive fields.
    Debanne D; Shulz DE; Fregnac Y
    J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):523-48. PubMed ID: 9508815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of orientation-selective EPSPs in simple cells of cat visual cortex.
    Ferster D
    J Neurosci; 1987 Jun; 7(6):1780-91. PubMed ID: 3598648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.