BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9801432)

  • 1. Factors influencing the diffusion-controlled release of papaverine from poly (L-lactic acid) matrix.
    Miyajima M; Koshika A; Okada J; Kusai A; Ikeda M
    J Control Release; 1998 Dec; 56(1-3):85-94. PubMed ID: 9801432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of polymer/basic drug interactions on the two-stage diffusion-controlled release from a poly(L-lactic acid) matrix.
    Miyajima M; Koshika A; Okada J; Ikeda M
    J Control Release; 1999 Sep; 61(3):295-304. PubMed ID: 10477802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of drug release from poly(L-lactic acid) matrix containing acidic or neutral drugs.
    Miyajima M; Koshika A; Okada J; Ikeda M
    J Control Release; 1999 Aug; 60(2-3):199-209. PubMed ID: 10425326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of physicochemical factors on the release kinetics of hydrophilic drugs from poly(L-lactic acid) (L-PLA) pellets.
    Kader A; Jalil R
    Drug Dev Ind Pharm; 1998 Jun; 24(6):535-9. PubMed ID: 9876619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled release of 3',5'-diester prodrugs of 5-fluoro-2'-deoxyuridine from poly-L-lactic acid microspheres.
    Seki T; Kawaguchi T; Endoh H; Ishikawa K; Juni K; Nakano M
    J Pharm Sci; 1990 Nov; 79(11):985-7. PubMed ID: 2149864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erosion of biodegradable block copolymers made of poly(D,L-lactic acid) and poly(ethylene glycol).
    von Burkersroda F; Gref R; Göpferich A
    Biomaterials; 1997 Dec; 18(24):1599-607. PubMed ID: 9613807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmotic-driven release of papaverine hydrochloride from novel poly(decane-co-tricarballylate) elastomeric matrices.
    Shaker MA; Younes HM
    Ther Deliv; 2010 Jul; 1(1):37-50. PubMed ID: 22816118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of drug release by utilizing pH-independent matrix system comprising water soluble drug verapamil hydrochloride.
    Baviskar D; Sharma R; Jain D
    Pak J Pharm Sci; 2013 Jan; 26(1):137-44. PubMed ID: 23261739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of isoniazid release from poly(d,l-lactide-co-glycolide) matrices prepared by dry-mixing and low density polymeric foam methods.
    Hsu YY; Gresser JD; Stewart RR; Trantolo DJ; Lyons CM; Simons GA; Gangadharam PR; Wise DL
    J Pharm Sci; 1996 Jul; 85(7):706-13. PubMed ID: 8818994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paclitaxel-loaded poly(L-lactic acid) microspheres 3: blending low and high molecular weight polymers to control morphology and drug release.
    Liggins RT; Burt HM
    Int J Pharm; 2004 Sep; 282(1-2):61-71. PubMed ID: 15336382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Preparation of peroral sustained release drug forms on a base of biodegradable polymers. 1. Preparation and characterization of polylactic acid].
    Mank R; Kala H; Richter M
    Pharmazie; 1989 Apr; 44(4):276-9. PubMed ID: 2772002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microencapsulation using poly(L-lactic acid) IV: Release properties of microcapsules containing phenobarbitone.
    Jalil R; Nixon JR
    J Microencapsul; 1990; 7(1):53-66. PubMed ID: 2308054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled release of 4-nitroanisole from poly(lactic acid) nanoparticles.
    Romero-Cano MS; Vincent B
    J Control Release; 2002 Jul; 82(1):127-35. PubMed ID: 12106983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microencapsulation using poly(DL-lactic acid). III: Effect of polymer molecular weight on the release kinetics.
    Jalil R; Nixon JR
    J Microencapsul; 1990; 7(3):357-74. PubMed ID: 2384838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving release completeness from PLGA-based implants for the acid-labile model protein ovalbumin.
    Duque L; Körber M; Bodmeier R
    Int J Pharm; 2018 Mar; 538(1-2):139-146. PubMed ID: 29355654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustained drug delivery systems II: Factors affecting release rates from poly(epsilon-caprolactone) and related biodegradable polyesters.
    Pitt CG; Gratzl MM; Jeffcoat AR; Zweidinger R; Schindler A
    J Pharm Sci; 1979 Dec; 68(12):1534-8. PubMed ID: 529046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low molecular weight poly(lactic acid) microparticles for controlled release of the herbicide metazachlor: preparation, morphology, and release kinetics.
    Stloukal P; Kucharczyk P; Sedlarik V; Bazant P; Koutny M
    J Agric Food Chem; 2012 Apr; 60(16):4111-9. PubMed ID: 22480233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the type of release medium on drug release from PLGA-based microparticles: experiment and theory.
    Faisant N; Akiki J; Siepmann F; Benoit JP; Siepmann J
    Int J Pharm; 2006 May; 314(2):189-97. PubMed ID: 16510257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of in vitro drug release, pH change, and molecular weight degradation of poly(L-lactic acid) and poly(D,L-lactide-co-glycolide) fibers.
    Crow BB; Borneman AF; Hawkins DL; Smith GM; Nelson KD
    Tissue Eng; 2005; 11(7-8):1077-84. PubMed ID: 16144443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.