These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 9801770)
1. Response of Azospirillum brasilense Cd to sodium chloride stress. Rivarola V; Castro S; Mori G; Jofré E; Fabra A; Garnica R; Balegno H Antonie Van Leeuwenhoek; 1998 Apr; 73(3):255-61. PubMed ID: 9801770 [TBL] [Abstract][Full Text] [Related]
2. Effect of root exudates on the exopolysaccharide composition and the lipopolysaccharide profile of Azospirillum brasilense Cd under saline stress. Fischer SE; Miguel MJ; Mori GB FEMS Microbiol Lett; 2003 Feb; 219(1):53-62. PubMed ID: 12594023 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of biosynthesis and activity of nitrogenase in Azospirillum brasilense Sp7 under salinity stress. Tripathi AK; Nagarajan T; Verma SC; Rudulier DL Curr Microbiol; 2002 May; 44(5):363-7. PubMed ID: 11927988 [TBL] [Abstract][Full Text] [Related]
4. In vitro protein synthesis is affected by the herbicide 2,4-dichlorophenoxyacetic acid in Azospirillum brasilense. Rivarola V; Fabra A; Mori G; Balegno H Toxicology; 1992; 73(1):71-9. PubMed ID: 1375402 [TBL] [Abstract][Full Text] [Related]
5. Effects of 2,4-dichlorophenoxyacetic acid on polyamine transport and metabolism in Azospirillum brasilense Cd. Mori G; Fabra A; Castro S; Rivarola V; Giordano W; Balegno H Toxicology; 1995 Apr; 98(1-3):23-9. PubMed ID: 7740550 [TBL] [Abstract][Full Text] [Related]
6. [Effect of the fungicide captan on Azospirillum brasilense Cd in pure culture and associated with Setaria italica]. Di Ciocco CA; Rodríguez Cáceres E Rev Argent Microbiol; 1997; 29(3):152-6. PubMed ID: 9411490 [TBL] [Abstract][Full Text] [Related]
7. Characterization of 2,4-dichlorophenoxyacetic acid transport and its relationship with polyamines in Azospirillum brasilense. Castro S; Fabra A; Mori G; Rivarola V; Giordano W; Balegno H Toxicol Lett; 1996 Jan; 84(1):33-6. PubMed ID: 8597175 [TBL] [Abstract][Full Text] [Related]
8. An extracytoplasmic function sigma factor cotranscribed with its cognate anti-sigma factor confers tolerance to NaCl, ethanol and methylene blue in Azospirillum brasilense Sp7. Mishra MN; Kumar S; Gupta N; Kaur S; Gupta A; Tripathi AK Microbiology (Reading); 2011 Apr; 157(Pt 4):988-999. PubMed ID: 21233159 [TBL] [Abstract][Full Text] [Related]
9. Mutation in a D-alanine-D-alanine ligase of Azospirillum brasilense Cd results in an overproduction of exopolysaccharides and a decreased tolerance to saline stress. Jofré E; Fischer S; Príncipe A; Castro M; Ferrari W; Lagares A; Mori G FEMS Microbiol Lett; 2009 Jan; 290(2):236-46. PubMed ID: 19025567 [TBL] [Abstract][Full Text] [Related]
10. Strain-specific salt tolerance and osmoregulatory mechanisms in Azospirillum brasilense. Chowdhury SP; Nagarajan T; Tripathi R; Mishra MN; Le Rudulier D; Tripathi AK FEMS Microbiol Lett; 2007 Feb; 267(1):72-9. PubMed ID: 17156127 [TBL] [Abstract][Full Text] [Related]
11. New osmoregulated beta(1-3),beta(1-6) glucosyltransferase(s) in Azospirillum brasilense. Altabe SG; Iñón de Iannino N; de Mendoza D; Ugalde RA J Bacteriol; 1994 Aug; 176(16):4890-8. PubMed ID: 8051002 [TBL] [Abstract][Full Text] [Related]
12. Aggregation in Azospirillum brasilense: effects of chemical and physical factors and involvement of extracellular components. Burdman S; Jurkevitch E; Schwartsburd B; Hampel M; Okon Y Microbiology (Reading); 1998 Jul; 144 ( Pt 7)():1989-1999. PubMed ID: 9695932 [TBL] [Abstract][Full Text] [Related]
13. Oxidative and antioxidative responses in the wheat-Azospirillum brasilense interaction. Méndez-Gómez M; Castro-Mercado E; Alexandre G; García-Pineda E Protoplasma; 2016 Mar; 253(2):477-86. PubMed ID: 25952083 [TBL] [Abstract][Full Text] [Related]
15. Microorganisms associated to tomato seedlings growing in saline culture act as osmoprotectant. Cortés-Jiménez D; Gómez-Guzmán A; Iturriaga G; Suárez R; Alpírez GM; Escalante FM Braz J Microbiol; 2014; 45(2):613-20. PubMed ID: 25242948 [TBL] [Abstract][Full Text] [Related]
16. Osmoregulation in Azospirillum brasilense: glycine betaine transport enhances growth and nitrogen fixation under salt stress. Riou N; Le Rudulier D J Gen Microbiol; 1990 Aug; 136(8):1455-61. PubMed ID: 22991739 [TBL] [Abstract][Full Text] [Related]
17. Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings. Zawoznik MS; Ameneiros M; Benavides MP; Vázquez S; Groppa MD Appl Microbiol Biotechnol; 2011 May; 90(4):1389-97. PubMed ID: 21365472 [TBL] [Abstract][Full Text] [Related]
18. Influence of substrate composition and flow rate on growth of Azospirillum brasilense Cd in a co-culture with 3 sorghum rhizobacteria. Lippi D; De Paolis MR; Di Mattia E; Pietrosanti T; Cacciari I Can J Microbiol; 2004 Oct; 50(10):861-7. PubMed ID: 15644901 [TBL] [Abstract][Full Text] [Related]
19. [Isolation and purification of Mn-peroxidase from Azospirillum brasilense Sp245]. Kupriashina MA; Selivanov NIu; Nikitina VE Prikl Biokhim Mikrobiol; 2012; 48(1):23-6. PubMed ID: 22567881 [TBL] [Abstract][Full Text] [Related]
20. Reorganization of Azospirillum brasilense cell membrane is mediated by lipid composition adjustment to maintain optimal fluidity during water deficit. Cesari AB; Paulucci NS; Biasutti MA; Reguera YB; Gallarato LA; Kilmurray C; Dardanelli MS J Appl Microbiol; 2016 Jan; 120(1):185-94. PubMed ID: 26535566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]