These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. A fully automated calibration method for an optical see-through head-mounted operating microscope with variable zoom and focus. Figl M; Ede C; Hummel J; Wanschitz F; Ewers R; Bergmann H; Birkfellner W IEEE Trans Med Imaging; 2005 Nov; 24(11):1492-9. PubMed ID: 16279085 [TBL] [Abstract][Full Text] [Related]
45. MRI-guided stereotaxic targeting in pigs based on a stereotaxic localizer box fitted with an isocentric frame and use of SurgiPlan computer-planning software. Bjarkam CR; Cancian G; Glud AN; Ettrup KS; Jørgensen RL; Sørensen JC J Neurosci Methods; 2009 Oct; 183(2):119-26. PubMed ID: 19559051 [TBL] [Abstract][Full Text] [Related]
46. Frameless stereotactic neurosurgery: two steps towards the Holy Grail of surgical navigation. Eljamel MS Stereotact Funct Neurosurg; 1999; 72(2-4):125-8. PubMed ID: 10853063 [TBL] [Abstract][Full Text] [Related]
47. The micro-laserbot: an alternative method for frameless stereotactic localization. Hardy TL; Brynildson LR; Campbell J; Gray J; Nyman B Stereotact Funct Neurosurg; 1996; 66(1-3):75-80. PubMed ID: 8938936 [TBL] [Abstract][Full Text] [Related]
48. Robotics in neurosurgery: which tools for what? Benabid AL; Hoffmann D; Seigneuret E; Chabardes S Acta Neurochir Suppl; 2006; 98():43-50. PubMed ID: 17009700 [TBL] [Abstract][Full Text] [Related]
49. Virtual pointer projection of the central sulcus to the outside of the skull using frameless neuronavigation -- accuracy and applications. Reinges MH; Krings T; Nguyen HH; Küker W; Spetzger U; Rohde V; Hütter BO; Thron A; Gilsbach JM Acta Neurochir (Wien); 2000; 142(12):1385-9; discussion 1389-90. PubMed ID: 11214633 [TBL] [Abstract][Full Text] [Related]
50. Robotics in child neurosurgery. Giorgi C; Sala R; Riva D; Cossu A; Eisenberg H Childs Nerv Syst; 2000 Nov; 16(10-11):832-4. PubMed ID: 11151738 [TBL] [Abstract][Full Text] [Related]
51. Ranging accuracy test of the sonic microstereometric system. Horstmann GA; Reinhardt HF Neurosurgery; 1994 Apr; 34(4):754-5; discussion 755. PubMed ID: 8008180 [TBL] [Abstract][Full Text] [Related]
52. Comparison of frameless stereotactic systems: accuracy, precision, and applications. Benardete EA; Leonard MA; Weiner HL Neurosurgery; 2001 Dec; 49(6):1409-15; discussion 1415-6. PubMed ID: 11846941 [TBL] [Abstract][Full Text] [Related]
56. Stereo-videomicrography projection system for use at scientific meetings. A technical note. Ohta T; Nagasawa S; Kajimoto Y; Ogawa R Acta Neurochir (Wien); 1995; 137(1-2):96-7. PubMed ID: 8748877 [TBL] [Abstract][Full Text] [Related]
57. Neuronavigation: where is the evidence and will there ever be any? Whittle IR Br J Neurosurg; 1998 Feb; 12(1):69-71. PubMed ID: 11013656 [No Abstract] [Full Text] [Related]
58. [Development of a modular robot system for microsurgery]. Wapler M; Binnenböse T; Bräucker M; Dürr M; Hiller A; Stallkamp J; Urban V Biomed Tech (Berl); 1998; 43 Suppl():188-9. PubMed ID: 9859318 [No Abstract] [Full Text] [Related]
59. [Comment on the contribution by Ostertag and Warnke. Neuronavigation]. Muacevic A; Kreth FW; Steiger HJ Nervenarzt; 1999 Dec; 70(12):1121. PubMed ID: 10637821 [No Abstract] [Full Text] [Related]
60. A new instrument for improved accuracy of stereotactic depth electrode placement. Technical note. Ashpole RD; Fabinyi GC; Vosmansky M J Neurosurg; 1996 Aug; 85(2):357-8. PubMed ID: 8755771 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]