These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 9802222)

  • 21. Characterization of bacteria capable of degrading soil-sorbed biphenyl.
    Wu G; Feng Y; Boyd SA
    Bull Environ Contam Toxicol; 2003 Oct; 71(4):768-75. PubMed ID: 14672130
    [No Abstract]   [Full Text] [Related]  

  • 22. [Comparative studies in vivo and in vitro on the formation of phenolic biphenyl metabolites in various animal species (author's transl)[].
    Raig P; Beschorner J; Ammon R
    Arzneimittelforschung; 1976; 26(12):2178-82. PubMed ID: 1037268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The metabolism of biphenyl. V. Phenolic metabolites in some marine organisms.
    Meyer T; Bakke T
    Acta Pharmacol Toxicol (Copenh); 1977 Feb; 40(2):201-8. PubMed ID: 576551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cometabolic degradation of dibenzofuran by biphenyl-cultivated Ralstonia sp. strain SBUG 290.
    Becher D; Specht M; Hammer E; Francke W; Schauer F
    Appl Environ Microbiol; 2000 Oct; 66(10):4528-31. PubMed ID: 11010910
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biphenyl hydroxylations and spectrally apparent interactions with liver microsomes from hamsters pre-treated with phenobarbitone and 3-methylcholanthrene.
    Burke MD; Bridges JW
    Xenobiotica; 1975 Jun; 5(6):357-76. PubMed ID: 238342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A high-performance liquid chromatography assay for measuring integrated biphenyl metabolism by intact cells: its use with rat liver and human liver and kidney.
    Powis G; Moore DJ; Wilke TJ; Santone KS
    Anal Biochem; 1987 Nov; 167(1):191-8. PubMed ID: 3434795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosynthesis of the biphenyl phytoalexin aucuparin in Sorbus aucuparia cell cultures treated with Venturia inaequalis.
    Khalil MN; Beuerle T; Müller A; Ernst L; Bhavanam VB; Liu B; Beerhues L
    Phytochemistry; 2013 Dec; 96():101-9. PubMed ID: 24074553
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dehalogenation, denitration, dehydroxylation, and angular attack on substituted biphenyls and related compounds by a biphenyl dioxygenase.
    Seeger M; Cámara B; Hofer B
    J Bacteriol; 2001 Jun; 183(12):3548-55. PubMed ID: 11371517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidation of biphenyl by the cyanobacterium, Oscillatoria sp., strain JCM.
    Cerniglia CE; Van Baalen C; Gibson DT
    Arch Microbiol; 1980 Apr; 125(3):203-7. PubMed ID: 6769418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Anaerobic degradation of biphenyl by the facultative anaerobic strain Citrobacter freundi BS2211].
    Grishchenkov VG; Slepen'kin AV; Borodin AM
    Prikl Biokhim Mikrobiol; 2002; 38(2):145-8. PubMed ID: 11962210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and characterisation of a Sphingomonas strain able to degrade the fungicide ortho-phenylphenol.
    Perruchon C; Patsioura V; Vasileiadis S; Karpouzas DG
    Pest Manag Sci; 2016 Jan; 72(1):113-24. PubMed ID: 25556554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of catechol and hydroquinone metabolites of 4-monochlorobiphenyl.
    McLean MR; Bauer U; Amaro AR; Robertson LW
    Chem Res Toxicol; 1996; 9(1):158-64. PubMed ID: 8924585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Derivatization of bioactive carbazoles by the biphenyl-degrading bacterium Ralstonia sp. strain SBUG 290.
    Waldau D; Mikolasch A; Lalk M; Schauer F
    Appl Microbiol Biotechnol; 2009 May; 83(1):67-75. PubMed ID: 19148631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dehalogenation of chlorinated hydroxybiphenyls by fungal laccase.
    Schultz A; Jonas U; Hammer E; Schauer F
    Appl Environ Microbiol; 2001 Sep; 67(9):4377-81. PubMed ID: 11526052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular and biochemical characterization of two meta-cleavage dioxygenases involved in biphenyl and m-xylene degradation by Beijerinckia sp. strain B1.
    Kim E; Zylstra GJ
    J Bacteriol; 1995 Jun; 177(11):3095-103. PubMed ID: 7768806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The metabolic profile of sodium o-phenylphenate after subchronic oral administration to rats.
    Nakao T; Ushiyama K; Kabashima J; Nagai F; Nakagawa A; Ohno T; Ichikawa H; Kobayashi H; Hiraga K
    Food Chem Toxicol; 1983 Jun; 21(3):325-9. PubMed ID: 6683228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro metabolism of [14C]4-chlorobiphenyl and [14C]2,2',5,5'-tetrachlorobiphenyl by hepatic microsomes from rats and pigeons. Evidence against an obligatory arene oxide in aromatic hydroxylation reactions.
    Borlakoglu JT; Haegele KD; Reich HJ; Dils RR; Wilkins JP
    Int J Biochem; 1991; 23(12):1427-37. PubMed ID: 1761152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolism of 2,2'-dihydroxybiphenyl by Pseudomonas sp. strain HBP1: production and consumption of 2,2',3-trihydroxybiphenyl.
    Kohler HP; Schmid A; van der Maarel M
    J Bacteriol; 1993 Mar; 175(6):1621-8. PubMed ID: 8449871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biphenyl hydroxylation enhanced by an engineered o-xylene dioxygenase from Rhodococcus sp. strain DK17.
    Yoo M; Kim D; Zylstra GJ; Kang BS; Kim E
    Res Microbiol; 2011 Sep; 162(7):724-8. PubMed ID: 21575716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenol degradation by a Graphium sp. FIB4 isolated from industrial effluents.
    Santos VL; Heilbuth NM; Braga DT; Monteiro AS; Linardi VR
    J Basic Microbiol; 2003; 43(3):238-48. PubMed ID: 12761775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.