These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9802224)

  • 1. The formation of 1-hydroxymethylnaphthalene and 6-hydroxymethylquinoline by both oxidative and reductive routes in Cunninghamella elegans.
    Mountfield RJ; Hopper DJ
    Appl Microbiol Biotechnol; 1998 Sep; 50(3):379-83. PubMed ID: 9802224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of 1- and 2-methylnaphthalene by Cunninghamella elegans.
    Cerniglia CE; Lambert KJ; Miller DW; Freeman JP
    Appl Environ Microbiol; 1984 Jan; 47(1):111-8. PubMed ID: 6696408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pathway for biodegradation of 1-naphthoic acid by Pseudomonas maltophilia CSV89.
    Phale PS; Mahajan MC; Vaidyanathan CS
    Arch Microbiol; 1995 Jan; 163(1):42-7. PubMed ID: 7710320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of fluorophenyl pyridine carboxylic acids by the model fungus Cunninghamella elegans.
    Palmer-Brown W; Dunne B; Ortin Y; Fox MA; Sandford G; Murphy CD
    Xenobiotica; 2017 Sep; 47(9):763-770. PubMed ID: 27541932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quinoline biodegradation by filamentous fungus Cunninghamella elegans and adaptive modifications of the fungal membrane composition.
    Felczak A; Bernat P; Różalska S; Lisowska K
    Environ Sci Pollut Res Int; 2016 May; 23(9):8872-80. PubMed ID: 26810790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of the corticosteroid hormone cortexolone on the metabolites produced during phenanthrene biotransformation in Cunninghamella elegans.
    Lisowska K; Długoński J; Freeman JP; Cerniglia CE
    Chemosphere; 2006 Aug; 64(9):1499-506. PubMed ID: 16504243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the involvement of multiple pathways in the biodegradation of 1- and 2-methylnaphthalene by Pseudomonas putida CSV86.
    Mahajan MC; Phale PS; Vaidyanathan CS
    Arch Microbiol; 1994; 161(5):425-33. PubMed ID: 8042906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of the ethanolamine-type antihistamine diphenhydramine (Benadryl) by the fungus Cunninghamella elegans.
    Moody JD; Heinze TM; Hansen EB; Cerniglia CE
    Appl Microbiol Biotechnol; 2000 Mar; 53(3):310-5. PubMed ID: 10772471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acceleration of tributyltin chloride (TBT) degradation in liquid cultures of the filamentous fungus Cunninghamella elegans.
    Bernat P; Długoński J
    Chemosphere; 2006 Jan; 62(1):3-8. PubMed ID: 15961138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid oxidation of ring methyl groups is the primary mechanism of biotransformation of gemfibrozil by the fungus Cunninghamella elegans.
    Kang SI; Kang SY; Kanaly RA; Lee E; Lim Y; Hur HG
    Arch Microbiol; 2009 Jun; 191(6):509-17. PubMed ID: 19404612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransformation of fluorobiphenyl by Cunninghamella elegans.
    Amadio J; Murphy CD
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):345-51. PubMed ID: 19956946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of amoxapine by Cunninghamella elegans.
    Moody JD; Zhang D; Heinze TM; Cerniglia CE
    Appl Environ Microbiol; 2000 Aug; 66(8):3646-9. PubMed ID: 10919836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polar metabolites of polycyclic aromatic compounds from fungi are potential soil and groundwater contaminants.
    Boll ES; Johnsen AR; Christensen JH
    Chemosphere; 2015 Jan; 119():250-257. PubMed ID: 25025602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway.
    Annweiler E; Michaelis W; Meckenstock RU
    Appl Environ Microbiol; 2002 Feb; 68(2):852-8. PubMed ID: 11823228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation of bromhexine by Cunninghamella elegans, C. echinulata and C. blakesleeana.
    Dube AK; Kumar MS
    Braz J Microbiol; 2017; 48(2):259-267. PubMed ID: 27988088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutive and inducible hydroxylase activities involved in the degradation of naphthalene by Cunninghamella elegans.
    Faber BW; Schonewille AB; van Gorcom RF; Duine JA
    Appl Microbiol Biotechnol; 2001 May; 55(4):486-91. PubMed ID: 11398932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural elucidation of N-oxidized clemastine metabolites by liquid chromatography/tandem mass spectrometry and the use of Cunninghamella elegans to facilitate drug metabolite identification.
    Tevell Aberg A; Löfgren H; Bondesson U; Hedeland M
    Rapid Commun Mass Spectrom; 2010 May; 24(10):1447-56. PubMed ID: 20411584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotransformation of doxepin by Cunninghamella elegans.
    Moody JD; Freeman JP; Cerniglia CE
    Drug Metab Dispos; 1999 Oct; 27(10):1157-64. PubMed ID: 10497142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of mirtazapine by Cunninghamella elegans.
    Moody JD; Freeman JP; Fu PP; Cerniglia CE
    Drug Metab Dispos; 2002 Nov; 30(11):1274-9. PubMed ID: 12386135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial transformation of ambrisentan to its glycosides by Cunninghamella elegans.
    Sponchiado R; Sorrentino JM; Olegário N; Oliveira SS; Cordenonsi LM; Silveira GP; Fuentefria AM; Mendez ASL; Steppe M; Garcia CV
    Biomed Chromatogr; 2019 Jun; 33(6):e4496. PubMed ID: 30663135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.