These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
431 related articles for article (PubMed ID: 9802248)
1. Bioaccumulation of mercury in pelagic freshwater food webs. Watras CJ; Back RC; Halvorsen S; Hudson RJ; Morrison KA; Wente SP Sci Total Environ; 1998 Aug; 219(2-3):183-208. PubMed ID: 9802248 [TBL] [Abstract][Full Text] [Related]
2. An investigation of enhanced mercury bioaccumulation in fish from offshore feeding. Chételat J; Cloutier L; Amyot M Ecotoxicology; 2013 Aug; 22(6):1020-32. PubMed ID: 23748886 [TBL] [Abstract][Full Text] [Related]
3. Assessment of mercury bioaccumulation within the pelagic food web of lakes in the western Great Lakes region. Rolfhus KR; Hall BD; Monson BA; Paterson MJ; Jeremiason JD Ecotoxicology; 2011 Oct; 20(7):1520-9. PubMed ID: 21735124 [TBL] [Abstract][Full Text] [Related]
4. Mercury biomagnification in the aquaculture pond ecosystem in the Pearl River Delta. Cheng Z; Liang P; Shao DD; Wu SC; Nie XP; Chen KC; Li KB; Wong MH Arch Environ Contam Toxicol; 2011 Oct; 61(3):491-9. PubMed ID: 21290120 [TBL] [Abstract][Full Text] [Related]
5. The relationships between mercury and selenium in plankton and fish from a tropical food web. do A Kehrig H; Seixas TG; Palermo EA; Baêta AP; Castelo-Branco CW; Malm O; Moreira I Environ Sci Pollut Res Int; 2009 Jan; 16(1):10-24. PubMed ID: 18751748 [TBL] [Abstract][Full Text] [Related]
6. Terrestrial diet influences mercury bioaccumulation in zooplankton and macroinvertebrates in lakes with differing dissolved organic carbon concentrations. Wu P; Kainz M; Åkerblom S; Bravo AG; Sonesten L; Branfireun B; Deininger A; Bergström AK; Bishop K Sci Total Environ; 2019 Jun; 669():821-832. PubMed ID: 30897439 [TBL] [Abstract][Full Text] [Related]
7. Spatial patterns of mercury in biota of Adirondack, New York lakes. Yu X; Driscoll CT; Montesdeoca M; Evers D; Duron M; Williams K; Schoch N; Kamman NC Ecotoxicology; 2011 Oct; 20(7):1543-54. PubMed ID: 21691858 [TBL] [Abstract][Full Text] [Related]
8. Factors affecting MeHg bioaccumulation in stream biota: the role of dissolved organic carbon and diet. Broadley HJ; Cottingham KL; Baer NA; Weathers KC; Ewing HA; Chaves-Ulloa R; Chickering J; Wilson AM; Shrestha J; Chen CY Ecotoxicology; 2019 Oct; 28(8):949-963. PubMed ID: 31410744 [TBL] [Abstract][Full Text] [Related]
9. The importance of bioconcentration into the pelagic food web base for methylmercury biomagnification: A meta-analysis. Wu P; Kainz MJ; Bravo AG; Åkerblom S; Sonesten L; Bishop K Sci Total Environ; 2019 Jan; 646():357-367. PubMed ID: 30055496 [TBL] [Abstract][Full Text] [Related]
10. Assessing element-specific patterns of bioaccumulation across New England lakes. Ward DM; Mayes B; Sturup S; Folt CL; Chen CY Sci Total Environ; 2012 Apr; 421-422():230-7. PubMed ID: 22356871 [TBL] [Abstract][Full Text] [Related]
11. Bioaccumulation and trophic transfer of mercury and selenium in african sub-tropical fluvial reservoirs food webs (Burkina Faso). Ouédraogo O; Chételat J; Amyot M PLoS One; 2015; 10(4):e0123048. PubMed ID: 25875292 [TBL] [Abstract][Full Text] [Related]
12. Influence of dissolved organic carbon on methylmercury bioavailability across Minnesota stream ecosystems. Tsui MT; Finlay JC Environ Sci Technol; 2011 Jul; 45(14):5981-7. PubMed ID: 21696154 [TBL] [Abstract][Full Text] [Related]
13. Effects of forest management on mercury bioaccumulation and biomagnification along the river continuum. Negrazis L; Kidd KA; Erdozain M; Emilson EJS; Mitchell CPJ; Gray MA Environ Pollut; 2022 Oct; 310():119810. PubMed ID: 35940481 [TBL] [Abstract][Full Text] [Related]
14. Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic. Lescord GL; Kidd KA; Kirk JL; O'Driscoll NJ; Wang X; Muir DC Sci Total Environ; 2015 Mar; 509-510():195-205. PubMed ID: 24909711 [TBL] [Abstract][Full Text] [Related]
15. An examination of the factors influencing the bioaccumulation of methylmercury at the base of the estuarine food web. Mason RP; Buckman KL; Seelen EA; Taylor VF; Chen CY Sci Total Environ; 2023 Aug; 886():163996. PubMed ID: 37164101 [TBL] [Abstract][Full Text] [Related]
16. Higher mass-independent isotope fractionation of methylmercury in the pelagic food web of Lake Baikal (Russia). Perrot V; Pastukhov MV; Epov VN; Husted S; Donard OF; Amouroux D Environ Sci Technol; 2012 Jun; 46(11):5902-11. PubMed ID: 22545798 [TBL] [Abstract][Full Text] [Related]
17. Differential bioaccumulation of mercury by zooplankton taxa in a mercury-contaminated reservoir Guizhou China. Long SX; Hamilton PB; Yang Y; Wang S; Huang WD; Chen C; Tao R Environ Pollut; 2018 Aug; 239():147-160. PubMed ID: 29653305 [TBL] [Abstract][Full Text] [Related]
18. Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard. Jaeger I; Hop H; Gabrielsen GW Sci Total Environ; 2009 Aug; 407(16):4744-51. PubMed ID: 19454364 [TBL] [Abstract][Full Text] [Related]
19. Factors affecting enhanced mercury bioaccumulation in inland lakes of Isle Royale National Park, USA. Gorski PR; Cleckner LB; Hurley JP; Sierszen ME; Armstrong DE Sci Total Environ; 2003 Mar; 304(1-3):327-48. PubMed ID: 12663194 [TBL] [Abstract][Full Text] [Related]
20. Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web. Pickhardt PC; Folt CL; Chen CY; Klaue B; Blum JD Sci Total Environ; 2005 Mar; 339(1-3):89-101. PubMed ID: 15740761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]