These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
431 related articles for article (PubMed ID: 9802248)
21. Bioaccumulation patterns of methyl mercury and essential fatty acids in lacustrine planktonic food webs and fish. Kainz M; Telmer K; Mazumder A Sci Total Environ; 2006 Sep; 368(1):271-82. PubMed ID: 16226794 [TBL] [Abstract][Full Text] [Related]
22. The basis for ecotoxicological concern in aquatic ecosystems contaminated by historical mercury mining. Wiener JG; Suchanek TH Ecol Appl; 2008 Dec; 18(8 Suppl):A3-11. PubMed ID: 19475915 [TBL] [Abstract][Full Text] [Related]
23. Algal Density Controls the Spatial Variations in Hg Bioconcentration and Bioaccumulation at the Base of the Pelagic Food Web of Lake Taihu, China. Li P; Wang R; Kainz MJ; Yin D Environ Sci Technol; 2022 Oct; 56(20):14528-14538. PubMed ID: 36194456 [TBL] [Abstract][Full Text] [Related]
24. Bioaccumulation and trophic transfer of methylmercury in Long Island Sound. Hammerschmidt CR; Fitzgerald WF Arch Environ Contam Toxicol; 2006 Oct; 51(3):416-24. PubMed ID: 16823518 [TBL] [Abstract][Full Text] [Related]
25. Bioaccumulation characteristics of mercury in fish in the Three Gorges Reservoir, China. Xu Q; Zhao L; Wang Y; Xie Q; Yin D; Feng X; Wang D Environ Pollut; 2018 Dec; 243(Pt A):115-126. PubMed ID: 30172117 [TBL] [Abstract][Full Text] [Related]
26. Species- and habitat-specific bioaccumulation of total mercury and methylmercury in the food web of a deep oligotrophic lake. Arcagni M; Juncos R; Rizzo A; Pavlin M; Fajon V; Arribére MA; Horvat M; Ribeiro Guevara S Sci Total Environ; 2018 Jan; 612():1311-1319. PubMed ID: 28898937 [TBL] [Abstract][Full Text] [Related]
27. Impacts of autochthonous dissolved organic matter on the accumulation of methylmercury by phytoplankton and zooplankton in a eutrophic coastal ecosystem. Shao B; Li Z; Wu Z; Yang N; Cui X; Lin H; Liu Y; He W; Zhao Y; Wang X; Tong Y Environ Pollut; 2023 Nov; 336():122457. PubMed ID: 37633436 [TBL] [Abstract][Full Text] [Related]
28. Using sulfur stable isotopes to assess mercury bioaccumulation and biomagnification in temperate lake food webs. Clayden MG; Lescord GL; Kidd KA; Wang X; Muir DC; O'Driscoll NJ Environ Toxicol Chem; 2017 Mar; 36(3):661-670. PubMed ID: 27648524 [TBL] [Abstract][Full Text] [Related]
29. Temporal changes in the distribution, methylation, and bioaccumulation of newly deposited mercury in an aquatic ecosystem. Orihel DM; Paterson MJ; Blanchfield PJ; Bodaly RA; Gilmour CC; Hintelmann H Environ Pollut; 2008 Jul; 154(1):77-88. PubMed ID: 18272273 [TBL] [Abstract][Full Text] [Related]
30. Dragonfly larvae as biosentinels of Hg bioaccumulation in Northeastern and Adirondack lakes: relationships to abiotic factors. Nelson SJ; Chen CY; Kahl JS Ecotoxicology; 2020 Dec; 29(10):1659-1672. PubMed ID: 31883061 [TBL] [Abstract][Full Text] [Related]
31. Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation. Chasar LC; Scudder BC; Stewart AR; Bell AH; Aiken GR Environ Sci Technol; 2009 Apr; 43(8):2733-9. PubMed ID: 19475942 [TBL] [Abstract][Full Text] [Related]
32. Terrestrial organic matter increases zooplankton methylmercury accumulation in a brown-water boreal lake. Poste AE; Hoel CS; Andersen T; Arts MT; Færøvig PJ; Borgå K Sci Total Environ; 2019 Jul; 674():9-18. PubMed ID: 31003089 [TBL] [Abstract][Full Text] [Related]
33. Mercury isotope variations within the marine food web of Chinese Bohai Sea: Implications for mercury sources and biogeochemical cycling. Meng M; Sun RY; Liu HW; Yu B; Yin YG; Hu LG; Chen JB; Shi JB; Jiang GB J Hazard Mater; 2020 Feb; 384():121379. PubMed ID: 31611019 [TBL] [Abstract][Full Text] [Related]
34. Mercury bioaccumulation in zooplankton and its relationship with eutrophication in the waters in the karst region of Guizhou Province, Southwest China. Yao C; He T; Xu Y; Ran S; Qian X; Long S Environ Sci Pollut Res Int; 2020 Mar; 27(8):8596-8610. PubMed ID: 31907806 [TBL] [Abstract][Full Text] [Related]
35. Mercury bioavailability and bioaccumulation in estuarine food webs in the Gulf of Maine. Chen CY; Dionne M; Mayes BM; Ward DM; Sturup S; Jackson BP Environ Sci Technol; 2009 Mar; 43(6):1804-10. PubMed ID: 19368175 [TBL] [Abstract][Full Text] [Related]
36. Utility of Diffusive Gradient in Thin-Film Passive Samplers for Predicting Mercury Methylation Potential and Bioaccumulation in Freshwater Wetlands. Neal-Walthall N; Ndu U; Rivera NA; Elias DA; Hsu-Kim H Environ Sci Technol; 2022 Feb; 56(3):1743-1752. PubMed ID: 35044747 [TBL] [Abstract][Full Text] [Related]
37. Development of a mercury speciation, fate, and biotic uptake (BIOTRANSPEC) model: application to Lahontan Reservoir (Nevada, USA). Gandhi N; Bhavsar SP; Diamond ML; Kuwabara JS; Marvin-Dipasquale M; Krabbenhoft DP Environ Toxicol Chem; 2007 Nov; 26(11):2260-73. PubMed ID: 17941724 [TBL] [Abstract][Full Text] [Related]
38. Mercury in wild fish from high-altitude aquatic ecosystems in the Tibetan Plateau. Zhang Q; Pan K; Kang S; Zhu A; Wang WX Environ Sci Technol; 2014 May; 48(9):5220-8. PubMed ID: 24708089 [TBL] [Abstract][Full Text] [Related]
39. Uptake and elimination routes of inorganic mercury and methylmercury in Daphnia magna. Tsui MT; Wang WX Environ Sci Technol; 2004 Feb; 38(3):808-16. PubMed ID: 14968868 [TBL] [Abstract][Full Text] [Related]
40. Effects of Non-native Fish on Lacustrine Food Web Structure and Mercury Biomagnification along a Dissolved Organic Carbon Gradient. Barst BD; Hudelson K; Lescord GL; Santa-Rios A; Basu N; Crémazy A; Drevnick PE Environ Toxicol Chem; 2020 Nov; 39(11):2196-2207. PubMed ID: 32729960 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]