BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 9802505)

  • 1. Measuring diffusion of solutes into intervertebral disks with MR imaging and paramagnetic contrast medium.
    Nguyen-minh C; Haughton VM; Papke RA; An H; Censky SC
    AJNR Am J Neuroradiol; 1998 Oct; 19(9):1781-4. PubMed ID: 9802505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of degeneration of the intervertebral disk on the process of diffusion.
    Nguyen-minh C; Riley L; Ho KC; Xu R; An H; Haughton VM
    AJNR Am J Neuroradiol; 1997 Mar; 18(3):435-42. PubMed ID: 9090399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion into human intervertebral disks studied with MR and gadoteridol.
    Akansel G; Haughton VM; Papke RA; Censky S
    AJNR Am J Neuroradiol; 1997 Mar; 18(3):443-5. PubMed ID: 9090400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of intervertebral disks with gadolinium complexes: comparison of an ionic and a nonionic medium in an animal model.
    Ibrahim MA; Haughton VM; Hyde JS
    AJNR Am J Neuroradiol; 1994 Nov; 15(10):1907-10. PubMed ID: 7863940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of disk maturation on diffusion of low-molecular-weight gadolinium complexes: an experimental study in rabbits.
    Ibrahim MA; Haughton VM; Hyde JS
    AJNR Am J Neuroradiol; 1995; 16(6):1307-11. PubMed ID: 7677031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Canine intervertebral disks: correlation of anatomy and MR imaging.
    Sether LA; Nguyen C; Yu SN; Haughton VM; Ho KC; Biller DS; Strandt JA; Eurell JC
    Radiology; 1990 Apr; 175(1):207-11. PubMed ID: 2315482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of diffusion in lumbar intervertebral disks with occlusion of lumbar arteries: a study in adult volunteers.
    Kurunlahti M; Kerttula L; Jauhiainen J; Karppinen J; Tervonen O
    Radiology; 2001 Dec; 221(3):779-86. PubMed ID: 11719678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrast enhancement of normal intervertebral disks: time and dose dependence.
    Ibrahim MA; Jesmanowicz A; Hyde JS; Estkowski L; Haughton VM
    AJNR Am J Neuroradiol; 1994 Mar; 15(3):419-23. PubMed ID: 8197936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of apparent diffusion coefficient in normal and degenerated intervertebral lumbar disks: initial experience.
    Kealey SM; Aho T; Delong D; Barboriak DP; Provenzale JM; Eastwood JD
    Radiology; 2005 May; 235(2):569-74. PubMed ID: 15798157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2009 ISSLS Prize Winner: What influence does sustained mechanical load have on diffusion in the human intervertebral disc?: an in vivo study using serial postcontrast magnetic resonance imaging.
    Arun R; Freeman BJ; Scammell BE; McNally DS; Cox E; Gowland P
    Spine (Phila Pa 1976); 2009 Oct; 34(21):2324-37. PubMed ID: 19755934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intervertebral disk appearance correlated with stiffness of lumbar spinal motion segments.
    Haughton VM; Lim TH; An H
    AJNR Am J Neuroradiol; 1999; 20(6):1161-5. PubMed ID: 10445464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental model to study contrast enhancement in MR imaging of the intervertebral disk.
    Nguyen CM; Ho KC; Yu SW; Haughton VM; Strandt JA
    AJNR Am J Neuroradiol; 1989; 10(4):811-4. PubMed ID: 2505508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcification demonstrated as high signal intensity on T1-weighted MR images of the disks of the lumbar spine.
    Major NM; Helms CA; Genant HK
    Radiology; 1993 Nov; 189(2):494-6. PubMed ID: 8210379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance myelography evaluation of the lumbar spine end plates and intervertebral disks.
    Mollà E; Martí-Bonmatí L; Arana E; Martinez-Bisbal MC; Costa S
    Acta Radiol; 2005 Feb; 46(1):83-8. PubMed ID: 15841744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High signal intensity of intervertebral calcified disks on T1-weighted MR images resulting from fat content.
    Malghem J; Lecouvet FE; François R; Vande Berg BC; Duprez T; Cosnard G; Maldague BE
    Skeletal Radiol; 2005 Feb; 34(2):80-6. PubMed ID: 15480646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance imaging of the lumbar spine with CT correlation.
    Maravilla KR; Lesh P; Weinreb JC; Selby DK; Mooney V
    AJNR Am J Neuroradiol; 1985; 6(2):237-45. PubMed ID: 3920882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic contrast enhanced-magnetic resonance imaging study of the nutrition pathway for lumbar intervertebral disk cartilage of normal goats.
    Du H; Ma SH; Guan M; Han B; Yang GF; Zhang M; Liu M
    Orthop Surg; 2011 May; 3(2):106-12. PubMed ID: 22009595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Criteria for classifying normal and degenerated lumbar intervertebral disks.
    Yu S; Haughton VM; Sether LA; Ho KC; Wagner M
    Radiology; 1989 Feb; 170(2):523-6. PubMed ID: 2911680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperintense disks on T1-weighted MR images: correlation with calcification.
    Bangert BA; Modic MT; Ross JS; Obuchowski NA; Perl J; Ruggieri PM; Masaryk TJ
    Radiology; 1995 May; 195(2):437-43. PubMed ID: 7724763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrast between scar and recurrent herniated disk on contrast-enhanced MR images.
    Haughton V; Schreibman K; De Smet A
    AJNR Am J Neuroradiol; 2002; 23(10):1652-6. PubMed ID: 12427617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.