These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9802778)

  • 1. Correction to flow rate--pressure drop relation in coronary angioplasty: steady streaming effect.
    Sarkar A; Jayaraman G
    J Biomech; 1998 Sep; 31(9):781-91. PubMed ID: 9802778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow in a catheterized curved artery with stenosis.
    Dash RK; Jayaraman G; Mehta KN
    J Biomech; 1999 Jan; 32(1):49-61. PubMed ID: 10050951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimated mean flow resistance increase during coronary artery catheterization.
    Back LH
    J Biomech; 1994 Feb; 27(2):169-75. PubMed ID: 8132684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological flow simulation in residual human stenoses after coronary angioplasty.
    Banerjee RK; Back LH; Back MR; Cho YI
    J Biomech Eng; 2000 Aug; 122(4):310-20. PubMed ID: 11036553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of increased flow resistance in a narrow catheterized artery--a theoretical model.
    Dash RK; Jayaraman G; Mehta KN
    J Biomech; 1996 Jul; 29(7):917-30. PubMed ID: 8809622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catheter obstruction effect on pulsatile flow rate--pressure drop during coronary angioplasty.
    Banerjee RK; Back LH; Back MR; Cho YI
    J Biomech Eng; 1999 Jun; 121(3):281-9. PubMed ID: 10396693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of diagnostic guidewire catheter presence on translesional hemodynamic measurements across significant coronary artery stenoses.
    Banerjee RK; Back LH; Back MR
    Biorheology; 2003; 40(6):613-35. PubMed ID: 14610312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of arterial wall compliance on the pressure drop across coronary artery stenoses under hyperemic flow condition.
    Konala BC; Das A; Banerjee RK
    Mol Cell Biomech; 2011 Mar; 8(1):1-20. PubMed ID: 21391325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow rate-pressure drop relation in coronary angioplasty: catheter obstruction effect.
    Back LH; Kwack EY; Back MR
    J Biomech Eng; 1996 Feb; 118(1):83-9. PubMed ID: 8833078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid dynamics of a partially collapsible stenosis in a flow model of the coronary circulation.
    Siebes M; Campbell CS; D'Argenio DZ
    J Biomech Eng; 1996 Nov; 118(4):489-97. PubMed ID: 8950652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical analysis of blood flow through a stenosed artery using a coupled, multiscale simulation method.
    Shim EB; Kamm RD; Heldt T; Mark RG
    Comput Cardiol; 2000; 27():219-22. PubMed ID: 12085933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty.
    Pijls NH; van Son JA; Kirkeeide RL; De Bruyne B; Gould KL
    Circulation; 1993 Apr; 87(4):1354-67. PubMed ID: 8462157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational simulation of intracoronary flow based on real coronary geometry.
    Boutsianis E; Dave H; Frauenfelder T; Poulikakos D; Wildermuth S; Turina M; Ventikos Y; Zund G
    Eur J Cardiothorac Surg; 2004 Aug; 26(2):248-56. PubMed ID: 15296879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of stenosis geometry on the Doppler-catheter gradient relation in vitro: a manifestation of pressure recovery.
    Baumgartner H; Schima H; Tulzer G; Kühn P
    J Am Coll Cardiol; 1993 Mar; 21(4):1018-25. PubMed ID: 8450150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure drop and flow rate measurements in a human aortic bifurcation cast for steady and pulsatile flow.
    Klanchar M; Tarbell JM
    J Biomech; 1989; 22(5):491-500. PubMed ID: 2777824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological flow analysis in significant human coronary artery stenoses.
    Banerjee RK; Back LH; Back MR; Cho YI
    Biorheology; 2003; 40(4):451-76. PubMed ID: 12775911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of catheter placement on 3-D velocity profiles in curved tubes resembling the human coronary system.
    Krams R; Wentzel JJ; Cespedes I; Vinke R; Carlier S; van der Steen AF; Lancee CT; Slager CJ
    Ultrasound Med Biol; 1999 Jun; 25(5):803-10. PubMed ID: 10414897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient integral boundary layer method to calculate the translesional pressure drop and the fractional flow reserve in myocardial bridges.
    Bernhard S; Möhlenkamp S; Tilgner A
    Biomed Eng Online; 2006 Jun; 5():42. PubMed ID: 16790065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulsatile blood flow in the entire coronary arterial tree: theory and experiment.
    Huo Y; Kassab GS
    Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1074-87. PubMed ID: 16617137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsteady non-Newtonian blood flow through a tapered overlapping stenosed catheterized vessel.
    Ali N; Zaman A; Sajid M; Nieto JJ; Torres A
    Math Biosci; 2015 Nov; 269():94-103. PubMed ID: 26361287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.