These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9802875)

  • 1. Determining the best cerebrospinal fluid shunt valve design: the pediatric valve design trial.
    Drake JM; Kestle JT
    Neurosurgery; 1998 Nov; 43(5):1259-60. PubMed ID: 9802875
    [No Abstract]   [Full Text] [Related]  

  • 2. Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus.
    Drake JM; Kestle JR; Milner R; Cinalli G; Boop F; Piatt J; Haines S; Schiff SJ; Cochrane DD; Steinbok P; MacNeil N
    Neurosurgery; 1998 Aug; 43(2):294-303; discussion 303-5. PubMed ID: 9696082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Explanted shunt valves: factors contributing to their failure.
    Brydon HL; Bayston R; Hayward RD; Harkness WF
    Eur J Pediatr Surg; 1994 Dec; 4 Suppl 1():37-8. PubMed ID: 7766553
    [No Abstract]   [Full Text] [Related]  

  • 4. Determining the best cerebrospinal fluid shunt valve design: the pediatric valve design trial.
    Drake JM; Kestle J
    Neurosurgery; 1996 Mar; 38(3):604-7. PubMed ID: 8837819
    [No Abstract]   [Full Text] [Related]  

  • 5. A cerebrospinal fluid shunt: a theoretical concept.
    Magram G
    Childs Nerv Syst; 1995 Oct; 11(10):604-6. PubMed ID: 8556728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic properties of hydrocephalus shunts.
    Czosnyka Z; Czosnyka M; Richards H; Pickard JD
    Acta Neurochir Suppl; 1998; 71():334-9. PubMed ID: 9779223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removed shunt valves: reasons for failure and implications for valve design.
    Brydon HL; Bayston R; Hayward R; Harkness W
    Br J Neurosurg; 1996 Jun; 10(3):245-51. PubMed ID: 8799534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rationale and methodology of the multicenter pediatric cerebrospinal fluid shunt design trial. Pediatric Hydrocephalus Treatment Evaluation Group.
    Drake JM; Kestle J
    Childs Nerv Syst; 1996 Aug; 12(8):434-47. PubMed ID: 8891361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A search for determinants of cerebrospinal fluid shunt survival: retrospective analysis of a 14-year institutional experience.
    Piatt JH; Carlson CV
    Pediatr Neurosurg; 1993; 19(5):233-41; discussion 242. PubMed ID: 8398847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How to get rid of the shunt: a comment.
    Epstein FJ
    Childs Nerv Syst; 1994 Jul; 10(5):342-3. PubMed ID: 7954506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risks of using siphon-reducing devices.
    Kremer P; Aschoff A; Kunze S
    Childs Nerv Syst; 1994 May; 10(4):231-5. PubMed ID: 7923232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 5: Effect of valve type on cerebrospinal fluid shunt efficacy.
    Baird LC; Mazzola CA; Auguste KI; Klimo P; Flannery AM;
    J Neurosurg Pediatr; 2014 Nov; 14 Suppl 1():35-43. PubMed ID: 25988781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pumping the shunt revisited. A longitudinal study.
    Piatt JH
    Pediatr Neurosurg; 1996 Aug; 25(2):73-6; discussion 76-7. PubMed ID: 9075250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcutaneous pressure-adjustable valves and magnetic resonance imaging: an ex vivo examination of the Codman-Medos programmable valve and the Sophy adjustable pressure valve.
    Fransen P
    Neurosurgery; 1998 Feb; 42(2):430. PubMed ID: 9482199
    [No Abstract]   [Full Text] [Related]  

  • 15. The Medos Hakim programmable valve in the treatment of pediatric hydrocephalus.
    Reinprecht A; Dietrich W; Bertalanffy A; Czech T
    Childs Nerv Syst; 1997; 13(11-12):588-93; discussion 593-4. PubMed ID: 9454974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Management of symptomatic chronic extra-axial fluid collections in pediatric patients.
    Bergenheim AT; Hariz MI
    Neurosurgery; 1993 Jun; 32(6):1056-7. PubMed ID: 8327086
    [No Abstract]   [Full Text] [Related]  

  • 17. An adjustable CSF shunt: advices for clinical use.
    Lundkvist B; Eklund A; Koskinen LO; Malm J
    Acta Neurol Scand; 2003 Jul; 108(1):38-42. PubMed ID: 12807391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A randomized, controlled study of a programmable shunt valve versus a conventional valve for patients with hydrocephalus.
    Czosnyka Z; Czosnyka M; Copeman J; Pickard JD
    Neurosurgery; 2000 Nov; 47(5):1250-1. PubMed ID: 11063123
    [No Abstract]   [Full Text] [Related]  

  • 19. Adjustable cerebrospinal fluid shunt valves in 3.0-Tesla MRI: a phantom study using explanted devices.
    Akbar M; Aschoff A; Georgi JC; Nennig E; Heiland S; Abel R; Stippich C
    Rofo; 2010 Jul; 182(7):594-602. PubMed ID: 20563954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A nonlinear biomechanical model for evaluation of cerebrospinal fluid shunt systems.
    Hafez MA; Kempski O
    Childs Nerv Syst; 1994 Jul; 10(5):302-10; discussion 310-1. PubMed ID: 7954499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.