These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9802875)

  • 41. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Strata programmable valve for shunt-dependent hydrocephalus: the pediatric experience at a single institution.
    Ahn ES; Bookland M; Carson BS; Weingart JD; Jallo GI
    Childs Nerv Syst; 2007 Mar; 23(3):297-303. PubMed ID: 17028879
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vitro experiment for verification of the tandem shunt valve system: a novel method for treating hydrocephalus by flexibly controlling cerebrospinal fluid flow and intracranial pressure.
    Aihara Y; Shoji I; Okada Y
    J Neurosurg Pediatr; 2013 Jan; 11(1):43-7. PubMed ID: 23140212
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Current treatment of normal-pressure hydrocephalus: comparison of flow-regulated and differential-pressure shunt valves.
    Weiner HL; Constantini S; Cohen H; Wisoff JH
    Neurosurgery; 1995 Nov; 37(5):877-84. PubMed ID: 8559335
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Failure of cerebrospinal fluid shunts: part I: Obstruction and mechanical failure.
    Browd SR; Ragel BT; Gottfried ON; Kestle JR
    Pediatr Neurol; 2006 Feb; 34(2):83-92. PubMed ID: 16458818
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physical properties of cerebrospinal fluid of relevance to shunt function. 2: The effect of protein upon CSF surface tension and contact angle.
    Brydon HL; Hayward R; Harkness W; Bayston R
    Br J Neurosurg; 1995; 9(5):645-51. PubMed ID: 8561937
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Initial experiences with a new cerebrospinal fluid collection system].
    Lorenz M; Repschläger F; Dietz H
    Neurochirurgia (Stuttg); 1992 Nov; 35(6):196-8. PubMed ID: 1494413
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydraulic and mechanical mis-matching of valve shunts used in the treatment of hydrocephalus: the need for a servo-valve shunt.
    Hakim S
    Dev Med Child Neurol; 1973 Oct; 15(5):646-53. PubMed ID: 4765233
    [No Abstract]   [Full Text] [Related]  

  • 49. The effect of protein and blood cells on the flow-pressure characteristics of shunts.
    Brydon HL; Bayston R; Hayward R; Harkness W
    Neurosurgery; 1996 Mar; 38(3):498-504; discussion 505. PubMed ID: 8837802
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protein adsorption to hydrocephalus shunt catheters: CSF protein adsorption.
    Brydon HL; Keir G; Thompson EJ; Bayston R; Hayward R; Harkness W
    J Neurol Neurosurg Psychiatry; 1998 May; 64(5):643-7. PubMed ID: 9598681
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Magnetic resonance imaging and cerebrospinal fluid shunt valves.
    Akbar M; Stippich C; Aschoff A
    N Engl J Med; 2005 Sep; 353(13):1413-4. PubMed ID: 16192492
    [No Abstract]   [Full Text] [Related]  

  • 52. Pathophysiology of isolated lateral ventriculomegaly in shunted myelodysplastic children.
    Berger MS; Sundsten J; Lemire RJ; Silbergeld D; Newell D; Shurtleff D
    Pediatr Neurosurg; 1990-1991; 16(6):301-4. PubMed ID: 2134740
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physical properties of cerebrospinal fluid of relevance to shunt function. 1: The effect of protein upon CSF viscosity.
    Brydon HL; Hayward R; Harkness W; Bayston R
    Br J Neurosurg; 1995; 9(5):639-44. PubMed ID: 8561936
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The CSF accumulator: its role in the central nervous system and implications for advancing hydrocephalus shunt technology.
    Magram G; Liakos AM
    Pediatr Neurosurg; 1997 May; 26(5):236-46. PubMed ID: 9440493
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Intraventricular pressure dynamics in ventriculocholecystic shunting: a telemetric study.
    Frim DM; Lathrop D; Chwals WJ
    Pediatr Neurosurg; 2001 Feb; 34(2):73-6. PubMed ID: 11287806
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiple shunt failures: an analysis of relevant features.
    Tuli S; Drake JM
    Childs Nerv Syst; 1999 Mar; 15(2-3):79. PubMed ID: 10230659
    [No Abstract]   [Full Text] [Related]  

  • 57. A study of the Indian valve for ventriculo-atrial shunts in the treatment of hydrocephalus.
    Singh G; Anthony M; Marino LL; Zachary RB
    Dev Med Child Neurol Suppl; 1975; (35):85-8. PubMed ID: 1060600
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Disconnection as a cause of ventriculoperitoneal shunt malfunction in multicomponent shunt systems.
    Aldrich EF; Harmann P
    Pediatr Neurosurg; 1990-1991; 16(6):309-11; discussion 312. PubMed ID: 2134742
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Posture-independent piston valve: a novel valve mechanism that actuates based on intracranial pressure alone.
    Medow JE; Luzzio CC
    J Neurosurg Pediatr; 2012 Jan; 9(1):64-8. PubMed ID: 22208323
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adjustable antisiphon shunt.
    Sood S; Canady AI; Ham SD
    Childs Nerv Syst; 1999 May; 15(5):246-9. PubMed ID: 10392496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.