These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 9803350)

  • 21. [Repair of articular cartilage defect with poly-lactide-co-glycolide loaded with recombinant human bone morphogenetic protein in rabbits].
    Cui Y; Wu J; Hu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Nov; 21(11):1233-7. PubMed ID: 18069483
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tissue reaction of bioabsorbable ultra high strength poly (L-lactide) rod. A long-term study in rabbits.
    Matsusue Y; Hanafusa S; Yamamuro T; Shikinami Y; Ikada Y
    Clin Orthop Relat Res; 1995 Aug; (317):246-53. PubMed ID: 7671487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Gel derived bioactive ceramic as bone substitute--an in vivo study].
    Niedzielski K; Wilamski M; Synder M
    Chir Narzadow Ruchu Ortop Pol; 2002; 67(4):385-94. PubMed ID: 12418403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone regeneration with resorbable polymeric membranes. III. Effect of poly(L-lactide) membrane pore size on the bone healing process in large defects.
    Pineda LM; Büsing M; Meinig RP; Gogolewski S
    J Biomed Mater Res; 1996 Jul; 31(3):385-94. PubMed ID: 8806065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polylactide membranes and sponges in the treatment of segmental defects in rabbit radii.
    Ip WY
    Injury; 2002 Aug; 33 Suppl 2():B66-70. PubMed ID: 12161321
    [No Abstract]   [Full Text] [Related]  

  • 26. Polylactide and polyglycolic acid-reinforced coralline hydroxy-apatite for the reconstruction of cranial bone defects in the rabbit.
    Antikainen T; Ruuskanen M; Taurio R; Kallioinen M; Serlo W; Törmälä P; Waris T
    Acta Neurochir (Wien); 1992; 117(1-2):59-62. PubMed ID: 1325098
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced guided bone regeneration with a resorbable chamber containing demineralized bone matrix.
    Giardino R; Aldini NN; Fini M; Giavaresi G; Torricelli P
    J Trauma; 2002 May; 52(5):933-7. PubMed ID: 11988662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigations of silk fiber/calcium phosphate cement biocomposite for radial bone defect repair in rabbits.
    Zhou L; Hu C; Chen Y; Xia S; Yan J
    J Orthop Surg Res; 2017 Feb; 12(1):32. PubMed ID: 28222750
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [An experimental study of the preparation of a cortical autologous transplantation for the treatment of defects of long tubular bones].
    Babiĭ VP
    Vestn Khir Im I I Grek; 1966 Apr; 96(4):126-9. PubMed ID: 4873270
    [No Abstract]   [Full Text] [Related]  

  • 30. Evolution of bone biomechanical properties at the micrometer scale around titanium implant as a function of healing time.
    Vayron R; Matsukawa M; Tsubota R; Mathieu V; Barthel E; Haiat G
    Phys Med Biol; 2014 Mar; 59(6):1389-406. PubMed ID: 24584004
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Implants of type I collagen gel containing MG-63 osteoblast-like cells can act as stable scaffolds stimulating the bone healing process at the sites of the surgically-produced segmental diaphyseal defects in male rabbits.
    Themistocleous GS; Katopodis HA; Khaldi L; Papalois A; Doillon C; Sourla A; Soucacos PN; Koutsilieris M
    In Vivo; 2007; 21(1):69-76. PubMed ID: 17354616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo osseointegration of dental implants with an antimicrobial peptide coating.
    Chen X; Zhou XC; Liu S; Wu RF; Aparicio C; Wu JY
    J Mater Sci Mater Med; 2017 May; 28(5):76. PubMed ID: 28386851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repair of bone defect by using vascular bundle implantation combined with Runx II gene-transfected adipose-derived stem cells and a biodegradable matrix.
    Han D; Li J
    Cell Tissue Res; 2013 Jun; 352(3):561-71. PubMed ID: 23604755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of a composite of polyorthoester and demineralized bone on the healing of large segmental defects of the radius in rats.
    Solheim E; Pinholt EM; Andersen R; Bang G; Sudmann E
    J Bone Joint Surg Am; 1992 Dec; 74(10):1456-63. PubMed ID: 1469005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of osteogenic medium on healing of the experimental critical bone defect in a rabbit model.
    Oryan A; Bigham-Sadegh A; Abbasi-Teshnizi F
    Bone; 2014 Jun; 63():53-60. PubMed ID: 24582803
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of recombinant human BMP-2 on bone-implant osseointegration: biomechanical testing and histomorphometric analysis.
    Lan J; Wang ZF; Shi B; Xia HB; Cheng XR
    Int J Oral Maxillofac Surg; 2007 Apr; 36(4):345-9. PubMed ID: 17300917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced repair of segmental bone defects in rabbit radius by porous tantalum scaffolds modified with the RGD peptide.
    Wang H; Li Q; Wang Q; Zhang H; Shi W; Gan H; Song H; Wang Z
    J Mater Sci Mater Med; 2017 Mar; 28(3):50. PubMed ID: 28197822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The impact of nicotine on bone healing and osseointegration.
    Balatsouka D; Gotfredsen K; Lindh CH; Berglundh T
    Clin Oral Implants Res; 2005 Jun; 16(3):268-76. PubMed ID: 15877746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The repair of segmental bone defects with porous bioglass: an experimental study in goat.
    Nandi SK; Kundu B; Datta S; De DK; Basu D
    Res Vet Sci; 2009 Feb; 86(1):162-73. PubMed ID: 18602125
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds.
    Solchaga LA; Temenoff JS; Gao J; Mikos AG; Caplan AI; Goldberg VM
    Osteoarthritis Cartilage; 2005 Apr; 13(4):297-309. PubMed ID: 15780643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.