These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 9803382)

  • 1. Mathematical model of energy transfer in hearts with inhibited or ablated creatine kinase system.
    Saks V; Aliev M; Dos Santos P; Vendelin M; Kongas O
    MAGMA; 1998 Sep; 6(2-3):124-5. PubMed ID: 9803382
    [No Abstract]   [Full Text] [Related]  

  • 2. Energetic basis of diastolic dysfunction.
    Tian R
    MAGMA; 1998 Sep; 6(2-3):129-31. PubMed ID: 9803384
    [No Abstract]   [Full Text] [Related]  

  • 3. Creatine kinase: an enzyme with a central role in cellular energy metabolism.
    Wallimann T; Dolder M; Schlattner U; Eder M; Hornemann T; Kraft T; Stolz M
    MAGMA; 1998 Sep; 6(2-3):116-9. PubMed ID: 9803379
    [No Abstract]   [Full Text] [Related]  

  • 4. Human cardiac spectroscopy.
    Bottomley PA; Weiss RG
    MAGMA; 1998 Sep; 6(2-3):157-60. PubMed ID: 9803397
    [No Abstract]   [Full Text] [Related]  

  • 5. Creatine kinase knockout mice--what is the phenotype: heart.
    Ingwall JS
    MAGMA; 1998 Sep; 6(2-3):120-1. PubMed ID: 9803380
    [No Abstract]   [Full Text] [Related]  

  • 6. Impaired cardiac energetics in mice lacking muscle-specific isoenzymes of creatine kinase.
    Saupe KW; Spindler M; Tian R; Ingwall JS
    Circ Res; 1998 May; 82(8):898-907. PubMed ID: 9576109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The energetics of myocardial stretch. Creatine kinase flux and oxygen consumption in the noncontracting rat heart.
    Bittl JA; Ingwall JS
    Circ Res; 1986 Mar; 58(3):378-83. PubMed ID: 3013457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the energy transfer pathways. creatine kinase activities and heterogeneous distribution of ADP in the perfused heart.
    Joubert F; Hoerter JA; Mazet JL
    Mol Biol Rep; 2002; 29(1-2):177-82. PubMed ID: 12241053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of heart creatine kinase.
    Ingwall JS; Bittl JA
    Basic Res Cardiol; 1987; 82 Suppl 2():93-101. PubMed ID: 3663033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is there the creatine kinase equilibrium in working heart cells?
    Saks VA; Aliev MK
    Biochem Biophys Res Commun; 1996 Oct; 227(2):360-7. PubMed ID: 8878521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creatine kinase kinetics in diabetic cardiomyopathy.
    Matsumoto Y; Kaneko M; Kobayashi A; Fujise Y; Yamazaki N
    Am J Physiol; 1995 Jun; 268(6 Pt 1):E1070-6. PubMed ID: 7611380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of NMR spectroscopy for the study of heart failure.
    ten Hove M; Neubauer S
    Curr Pharm Des; 2008; 14(18):1787-97. PubMed ID: 18673182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart.
    Van Dorsten FA; Nederhoff MG; Nicolay K; Van Echteld CJ
    Am J Physiol; 1998 Oct; 275(4):H1191-9. PubMed ID: 9746466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of energy transport in heart cells. The functional coupling between mitochondrial creatine phosphokinase and ATP ADP translocase: kinetic evidence.
    Saks VA; Lipina NV; Smirnov VN; Chazov EI
    Arch Biochem Biophys; 1976 Mar; 173(1):34-41. PubMed ID: 1259440
    [No Abstract]   [Full Text] [Related]  

  • 16. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration.
    Aliev MK; Saks VA
    Biophys J; 1997 Jul; 73(1):428-45. PubMed ID: 9199806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetization transfer measurements of creatine kinase and ATPase rates in intact hearts.
    Uğurbil K
    Circulation; 1985 Nov; 72(5 Pt 2):IV94-6. PubMed ID: 2932267
    [No Abstract]   [Full Text] [Related]  

  • 18. Where have the fluxes gone?
    Aliev M; Schlattner U; Dzeja P; Wallimann T; Saks V
    J Biol Chem; 2010 Dec; 285(52):le21; author reply le22. PubMed ID: 21169368
    [No Abstract]   [Full Text] [Related]  

  • 19. The temperature dependence of creatine kinase fluxes in the rat heart.
    Matthews PM; Bland JL; Radda GK
    Biochim Biophys Acta; 1983 Sep; 763(2):140-6. PubMed ID: 6604548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS.
    Weiss K; Bottomley PA; Weiss RG
    NMR Biomed; 2015 Jun; 28(6):694-705. PubMed ID: 25914379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.