These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9803384)

  • 1. Energetic basis of diastolic dysfunction.
    Tian R
    MAGMA; 1998 Sep; 6(2-3):129-31. PubMed ID: 9803384
    [No Abstract]   [Full Text] [Related]  

  • 2. Creatine kinase: an enzyme with a central role in cellular energy metabolism.
    Wallimann T; Dolder M; Schlattner U; Eder M; Hornemann T; Kraft T; Stolz M
    MAGMA; 1998 Sep; 6(2-3):116-9. PubMed ID: 9803379
    [No Abstract]   [Full Text] [Related]  

  • 3. Mathematical model of energy transfer in hearts with inhibited or ablated creatine kinase system.
    Saks V; Aliev M; Dos Santos P; Vendelin M; Kongas O
    MAGMA; 1998 Sep; 6(2-3):124-5. PubMed ID: 9803382
    [No Abstract]   [Full Text] [Related]  

  • 4. Failure to maintain a low ADP concentration impairs diastolic function in hypertrophied rat hearts.
    Tian R; Nascimben L; Ingwall JS; Lorell BH
    Circulation; 1997 Aug; 96(4):1313-9. PubMed ID: 9286964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human cardiac spectroscopy.
    Bottomley PA; Weiss RG
    MAGMA; 1998 Sep; 6(2-3):157-60. PubMed ID: 9803397
    [No Abstract]   [Full Text] [Related]  

  • 6. Cardiac energy metabolism: contributions from nuclear magnetic resonance.
    Brown TR
    Circulation; 1985 Nov; 72(5 Pt 2):IV18-21. PubMed ID: 2414030
    [No Abstract]   [Full Text] [Related]  

  • 7. Functional and metabolic evaluation of the hypertrophied heart using MRI and 31P-MRS.
    Lamb HJ; van der Laarse A; Pluim BM; Beyerbacht HP; Doornbos J; van der Wall EE; de Roos A
    MAGMA; 1998 Sep; 6(2-3):168-70. PubMed ID: 9803400
    [No Abstract]   [Full Text] [Related]  

  • 8. High-energy phosphate metabolism and creatine kinase in failing hearts: a new porcine model.
    Ye Y; Gong G; Ochiai K; Liu J; Zhang J
    Circulation; 2001 Mar; 103(11):1570-6. PubMed ID: 11257087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The energetics of myocardial stretch. Creatine kinase flux and oxygen consumption in the noncontracting rat heart.
    Bittl JA; Ingwall JS
    Circ Res; 1986 Mar; 58(3):378-83. PubMed ID: 3013457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the energy transfer pathways. creatine kinase activities and heterogeneous distribution of ADP in the perfused heart.
    Joubert F; Hoerter JA; Mazet JL
    Mol Biol Rep; 2002; 29(1-2):177-82. PubMed ID: 12241053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered creatine kinase adenosine triphosphate kinetics in failing hypertrophied human myocardium.
    Smith CS; Bottomley PA; Schulman SP; Gerstenblith G; Weiss RG
    Circulation; 2006 Sep; 114(11):1151-8. PubMed ID: 16952984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional and energetic consequences of chronic myocardial creatine depletion by beta-guanidinopropionate in perfused hearts and in intact rats.
    Neubauer S; Hu K; Horn M; Remkes H; Hoffmann KD; Schmidt C; Schmidt TJ; Schnackerz K; Ertl G
    J Mol Cell Cardiol; 1999 Oct; 31(10):1845-55. PubMed ID: 10525422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of isoproterenol on myocardial perfusion, function, energy metabolism and nitric oxide pathway in the rat heart - a longitudinal MR study.
    Desrois M; Kober F; Lan C; Dalmasso C; Cole M; Clarke K; Cozzone PJ; Bernard M
    NMR Biomed; 2014 May; 27(5):529-38. PubMed ID: 24677605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of heart creatine kinase.
    Ingwall JS; Bittl JA
    Basic Res Cardiol; 1987; 82 Suppl 2():93-101. PubMed ID: 3663033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kinetics of the creatine kinase reaction in neonatal rabbit heart: does the rate equation accurately describe the kinetics observed in the isolated perfused heart?
    McAuliffe JJ; Perry SB; Brooks EE; Ingwall JS
    Prog Clin Biol Res; 1989; 315():581-92. PubMed ID: 2798514
    [No Abstract]   [Full Text] [Related]  

  • 16. Creatine and the control of energy metabolism in cardiac and skeletal muscle cells in culture.
    Seraydarian MW; Artaza L; Abbott BC
    J Mol Cell Cardiol; 1974 Oct; 6(5):405-13. PubMed ID: 4431045
    [No Abstract]   [Full Text] [Related]  

  • 17. Disruption of myofibrillar energy use: dual mechanisms that may contribute to postischemic dysfunction in stunned myocardium.
    Greenfield RA; Swain JL
    Circ Res; 1987 Feb; 60(2):283-9. PubMed ID: 2952365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The left atrium and diastolic dysfunction in hypertensive left ventricular hypertrophy: a consideration of size and function?
    Dwivedi G; Lip GY
    J Hypertens; 2008 Jul; 26(7):1310-2. PubMed ID: 18551004
    [No Abstract]   [Full Text] [Related]  

  • 19. Nucleotides and organophosphates of cardiac, fast and slow muscles of chick during development.
    Radha E; Krishnamoorthy RV
    Comp Biochem Physiol B; 1973 Aug; 45(4):847-65. PubMed ID: 4269549
    [No Abstract]   [Full Text] [Related]  

  • 20. Nitric oxide inhibits cardiac energy production via inhibition of mitochondrial creatine kinase.
    Kaasik A; Minajeva A; De Sousa E; Ventura-Clapier R; Veksler V
    FEBS Lett; 1999 Feb; 444(1):75-7. PubMed ID: 10037151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.