These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 9803472)

  • 1. Age effect on in vitro fermentation pattern and methane production in the caeca of chickens.
    Marounek M; Rada V
    Physiol Res; 1998; 47(4):259-63. PubMed ID: 9803472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro study of the age-dependent caecal fermentation pattern and methanogenesis in young rabbits.
    Piattoni F; Demeyer DI; Maertens L
    Reprod Nutr Dev; 1996; 36(3):253-61. PubMed ID: 8766730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age and incubation time effects on in vitro caecal fermentation pattern in rabbits before and after weaning.
    Marounek M; Fievez V; Mbanzamihigo L; Demeyer D; Maertens L
    Arch Tierernahr; 1999; 52(2):195-201. PubMed ID: 10548971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro study and comparison of caecal methanogenesis and fermentation pattern in the brown hare (Lepus europaeus) and domestic rabbit (Oryctolagus cuniculus).
    Miśta D; Króliczewska B; Marounek M; Pecka E; Zawadzki W; Nicpoń J
    PLoS One; 2015; 10(1):e0117117. PubMed ID: 25629411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentation of carbohydrates and yield of microbial protein in mixed cultures of rabbit caecal microorganisms.
    Marounek M; Brezina P; Baran M
    Arch Tierernahr; 2000; 53(3):241-52. PubMed ID: 11006829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of porcine bile acids on methane production by rumen contents in vitro.
    Immig I
    Arch Tierernahr; 1998; 51(1):21-6. PubMed ID: 9638302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro fermentation of broiler cecal content: the role of lactobacilli and pH value on the composition of microbiota and end products fermentation.
    Meimandipour A; Shuhaimi M; Hair-Bejo M; Azhar K; Kabeir BM; Rasti B; Yazid AM
    Lett Appl Microbiol; 2009 Oct; 49(4):415-20. PubMed ID: 19725887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of administration of Lactobacillus crispatus, Clostridium lactatifermentans and dietary lactose on the development of the normal microflora and volatile fatty acids in the caeca of broiler chicks.
    van der Wielen PW; van Knapen F; Biesterveld S
    Br Poult Sci; 2002 Sep; 43(4):545-50. PubMed ID: 12365511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dry anaerobic ammonia-methane production from chicken manure.
    Abouelenien F; Kitamura Y; Nishio N; Nakashimada Y
    Appl Microbiol Biotechnol; 2009 Mar; 82(4):757-64. PubMed ID: 19184596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ammonia production from amino acids and urea in the caecal contents of the chicken.
    Karasawa Y; Kawai H; Hosono A
    Comp Biochem Physiol B; 1988; 90(1):205-7. PubMed ID: 3396327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of removal of caecal contents on nitrogen utilisation and nitrogen excretion in caecally ligated chickens fed on a low protein diet supplemented with urea.
    Son JH; Karasawa Y
    Br Poult Sci; 2000 Mar; 41(1):69-71. PubMed ID: 10821525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ammonia production from uric acid and its absorption from the caecum of the cockerel.
    Karasawa Y; Okamoto M; Kawai H
    Br Poult Sci; 1988 Mar; 29(1):119-24. PubMed ID: 3382971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro Study of Caecal and Colon Microbial Fermentation Patterns in Wild Boar (Sus scrofa scrofa).
    Pecka-Kiełb E; Bujok J; Miśta D; Króliczewska B; Górecka J; Zawadzki W
    Folia Biol (Krakow); 2016; 64(1):31-6. PubMed ID: 27172710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of differentially fermentable carbohydrates on the microbial fermentation profile of the gastrointestinal tract of broilers.
    Rehman H; Böhm J; Zentek J
    J Anim Physiol Anim Nutr (Berl); 2008 Aug; 92(4):471-80. PubMed ID: 18662357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in production of ethanol, acids and H2 from glucose by the fecal flora of a 16- to 158-d-old breast-fed infant.
    Wolin MJ; Yerry S; Miller TL; Zhang Y; Bank S
    J Nutr; 1998 Jan; 128(1):85-90. PubMed ID: 9430607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nitro compounds and feedstuffs on in vitro methane production in chicken cecal contents and rumen fluid.
    Saengkerdsub S; Kim WK; Anderson RC; Nisbet DJ; Ricke SC
    Anaerobe; 2006 Apr; 12(2):85-92. PubMed ID: 16701620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential generation of hydrogen and methane from glutamic acid through combined photo-fermentation and methanogenesis.
    Xia A; Cheng J; Lin R; Liu J; Zhou J; Cen K
    Bioresour Technol; 2013 Mar; 131():146-51. PubMed ID: 23347921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probiotic preparations dose-dependently increase net production rates of organic acids and decrease that of ammonia by pig cecal bacteria in batch culture.
    Sakata T; Kojima T; Fujieda M; Miyakozawa M; Takahashi M; Ushida K
    Dig Dis Sci; 1999 Jul; 44(7):1485-93. PubMed ID: 10489936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of beta-glucanase supplementation of barley- and oat-based diets on growth performance and fermentation in broiler chicken gastrointestinal tract.
    Józefiak D; Rutkowski A; Jensen BB; Engberg RM
    Br Poult Sci; 2006 Feb; 47(1):57-64. PubMed ID: 16546798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.