These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 9803475)

  • 1. Effect of rhodopsin C-terminal peptide on photoresponses in functionally intact rod outer segments.
    Jindrová H; Detwiler PB
    Physiol Res; 1998; 47(4):279-84. PubMed ID: 9803475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a truncated form of arrestin isolated from bovine rod outer segments.
    Palczewski K; Buczylko J; Ohguro H; Annan RS; Carr SA; Crabb JW; Kaplan MW; Johnson RS; Walsh KA
    Protein Sci; 1994 Feb; 3(2):314-24. PubMed ID: 8003967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of arrestin: requirement of phosphorylation as the negative charge on residues in synthetic peptides from the carboxyl-terminal region of rhodopsin.
    McDowell JH; Robinson PR; Miller RL; Brannock MT; Arendt A; Smith WC; Hargrave PA
    Invest Ophthalmol Vis Sci; 2001 Jun; 42(7):1439-43. PubMed ID: 11381044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Function of the farnesyl moiety in visual signalling.
    McCarthy NE; Akhtar M
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):163-71. PubMed ID: 10727415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of arrestin (48K protein) and rhodopsin kinase on visual transduction.
    Palczewski K; Rispoli G; Detwiler PB
    Neuron; 1992 Jan; 8(1):117-26. PubMed ID: 1309646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin.
    Pulvermüller A; Schroder K; Fischer T; Hofmann KP
    J Biol Chem; 2000 Dec; 275(48):37679-85. PubMed ID: 10969086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective proteolysis of arrestin by calpain. Molecular characteristics and its effect on rhodopsin dephosphorylation.
    Azarian SM; King AJ; Hallett MA; Williams DS
    J Biol Chem; 1995 Oct; 270(41):24375-84. PubMed ID: 7592650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arrestin residues involved in the functional binding of arrestin to phosphorylated, photolyzed rhodopsin.
    Ascano MT; Smith WC; Gregurick SK; Robinson PR
    Mol Vis; 2006 Dec; 12():1516-25. PubMed ID: 17167410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arrestin-rhodopsin interaction. Multi-site binding delineated by peptide inhibition.
    Krupnick JG; Gurevich VV; Schepers T; Hamm HE; Benovic JL
    J Biol Chem; 1994 Feb; 269(5):3226-32. PubMed ID: 8106358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-dependent translocation of arrestin in the absence of rhodopsin phosphorylation and transducin signaling.
    Mendez A; Lem J; Simon M; Chen J
    J Neurosci; 2003 Apr; 23(8):3124-9. PubMed ID: 12716919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of regions of arrestin that bind to rhodopsin.
    Smith WC; McDowell JH; Dugger DR; Miller R; Arendt A; Popp MP; Hargrave PA
    Biochemistry; 1999 Mar; 38(9):2752-61. PubMed ID: 10052946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of GTP to transducin is not inhibited by arrestin and phosphorylated rhodopsin.
    Fukada Y; Yoshizawa T; Saito T; Ohguro H; Akino T
    FEBS Lett; 1990 Feb; 261(2):419-22. PubMed ID: 2311767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The arrestin-bound conformation and dynamics of the phosphorylated carboxy-terminal region of rhodopsin.
    Kisselev OG; McDowell JH; Hargrave PA
    FEBS Lett; 2004 Apr; 564(3):307-11. PubMed ID: 15111114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel mechanism for the activation of rhodopsin kinase: implications for other G protein-coupled receptor kinases (GRK's).
    Dean KR; Akhtar M
    Biochemistry; 1996 May; 35(19):6164-72. PubMed ID: 8634260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein kinase C and IP3 in photoresponses of functionally intact rod outer segments: constraints about their role.
    Jindrová H; Detwiler PB
    Physiol Res; 1998; 47(4):285-90. PubMed ID: 9803476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential phosphorylation of rhodopsin at multiple sites.
    Ohguro H; Palczewski K; Ericsson LH; Walsh KA; Johnson RS
    Biochemistry; 1993 Jun; 32(21):5718-24. PubMed ID: 8504090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A variant of arrestin-1 binds rod outer segment membranes in a light-independent manner.
    Uzcanga GL; Becerra AR; Perdomo D; Bubis J
    Arch Biochem Biophys; 2011 Mar; 507(2):219-31. PubMed ID: 21176771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the N-terminal region in rhodopsin kinase involved in its interaction with rhodopsin.
    Palczewski K; Buczyłko J; Lebioda L; Crabb JW; Polans AS
    J Biol Chem; 1993 Mar; 268(8):6004-13. PubMed ID: 8383684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of rhodopsin kinase.
    McCarthy NE; Akhtar M
    Biochem J; 2002 Apr; 363(Pt 2):359-64. PubMed ID: 11931666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative modeling of the molecular steps underlying shut-off of rhodopsin activity in rod phototransduction.
    Lamb TD; Kraft TW
    Mol Vis; 2016; 22():674-96. PubMed ID: 27375353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.