These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 9803475)

  • 21. Structural and enzymatic aspects of rhodopsin phosphorylation.
    Ohguro H; Rudnicka-Nawrot M; Buczyłko J; Zhao X; Taylor JA; Walsh KA; Palczewski K
    J Biol Chem; 1996 Mar; 271(9):5215-24. PubMed ID: 8617805
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanistic studies on rhodopsin kinase. Light-dependent phosphorylation of C-terminal peptides of rhodopsin.
    Brown NG; Fowles C; Sharma R; Akhtar M
    Eur J Biochem; 1992 Sep; 208(3):659-67. PubMed ID: 1396673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. X-ray crystal structure of arrestin from bovine rod outer segments.
    Granzin J; Wilden U; Choe HW; Labahn J; Krafft B; Büldt G
    Nature; 1998 Feb; 391(6670):918-21. PubMed ID: 9495348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct binding of visual arrestin to a rhodopsin carboxyl terminal synthetic phosphopeptide.
    Liu P; Roush ED; Bruno J; Osawa S; Weiss ER
    Mol Vis; 2004 Oct; 10():712-9. PubMed ID: 15480300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of rhodopsin multiple phosphorylation.
    Ohguro H; Johnson RS; Ericsson LH; Walsh KA; Palczewski K
    Biochemistry; 1994 Feb; 33(4):1023-8. PubMed ID: 8305429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cyclic AMP has no effect on the generation, recovery, or background adaptation of light responses in functionally intact rod outer segments: with implications about the function of phosducin.
    Jindrova H; Detwiler PB
    Vis Neurosci; 2000; 17(6):887-92. PubMed ID: 11193104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthetic phosphopeptide from rhodopsin sequence induces retinal arrestin binding to photoactivated unphosphorylated rhodopsin.
    Puig J; Arendt A; Tomson FL; Abdulaeva G; Miller R; Hargrave PA; McDowell JH
    FEBS Lett; 1995 Apr; 362(2):185-8. PubMed ID: 7720869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The isolation of stable cattle rod outer segments with an intact plasma membrane.
    Schnetkamp PP; Klompmakers AA; Daemen FJ
    Biochim Biophys Acta; 1979 Apr; 552(3):379-89. PubMed ID: 36143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping interaction sites between rhodopsin and arrestin by phage display and synthetic peptides.
    Smith WC; Hargrave PA
    Methods Enzymol; 2000; 315():437-55. PubMed ID: 10736719
    [No Abstract]   [Full Text] [Related]  

  • 30. [Peculiarities of rhodopsin photoconversion at the early stages of photolysis].
    Fel'dman TB; Fedorovich IB; Ostrovskiĭ MA
    Ross Fiziol Zh Im I M Sechenova; 2003 Feb; 89(2):113-22. PubMed ID: 12710180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arrestin translocation is induced at a critical threshold of visual signaling and is superstoichiometric to bleached rhodopsin.
    Strissel KJ; Sokolov M; Trieu LH; Arshavsky VY
    J Neurosci; 2006 Jan; 26(4):1146-53. PubMed ID: 16436601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NMR spectroscopy of phosphorylated wild-type rhodopsin: mobility of the phosphorylated C-terminus of rhodopsin in the dark and upon light activation.
    Getmanova E; Patel AB; Klein-Seetharaman J; Loewen MC; Reeves PJ; Friedman N; Sheves M; Smith SO; Khorana HG
    Biochemistry; 2004 Feb; 43(4):1126-33. PubMed ID: 14744159
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Substrate recognition determinants for rhodopsin kinase: studies with synthetic peptides, polyanions, and polycations.
    Palczewski K; Arendt A; McDowell JH; Hargrave PA
    Biochemistry; 1989 Oct; 28(22):8764-70. PubMed ID: 2605220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two intermediates appear on the lumirhodopsin time scale after rhodopsin photoexcitation.
    Szundi I; Lewis JW; Kliger DS
    Biochemistry; 2003 May; 42(17):5091-8. PubMed ID: 12718552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bovine rod rhodopsin. 1. Bleaching by luminescence in vitro by recombination of radicals from polyunsaturated fatty acids.
    Narici L; Paci M; Brunetti V; Rinaldi A; Sannita WG; De Martino A
    Free Radic Biol Med; 2012 Aug; 53(3):482-7. PubMed ID: 22634396
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of Arrestin on the Photodecay of Bovine Rhodopsin.
    Chatterjee D; Eckert CE; Slavov C; Saxena K; Fürtig B; Sanders CR; Gurevich VV; Wachtveitl J; Schwalbe H
    Angew Chem Int Ed Engl; 2015 Nov; 54(46):13555-60. PubMed ID: 26383645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of phosphorylation sites within vertebrate and invertebrate rhodopsin.
    Ohguro H
    Methods Enzymol; 2000; 316():482-92. PubMed ID: 10800696
    [No Abstract]   [Full Text] [Related]  

  • 38. Structure of the third cytoplasmic loop of bovine rhodopsin.
    Yeagle PL; Alderfer JL; Albert AD
    Biochemistry; 1995 Nov; 34(45):14621-5. PubMed ID: 7578070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rhodopsin is the major in situ substrate of protein kinase C in rod outer segments of photoreceptors.
    Newton AC; Williams DS
    J Biol Chem; 1993 Aug; 268(24):18181-6. PubMed ID: 8349693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An intact N terminus of the gamma subunit is required for the Gbetagamma stimulation of rhodopsin phosphorylation by human beta-adrenergic receptor kinase-1 but not for kinase binding.
    Haske TN; DeBlasi A; LeVine H
    J Biol Chem; 1996 Feb; 271(6):2941-8. PubMed ID: 8621684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.