These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9803944)

  • 1. Mass transfer in chromatographic columns studied by PFG NMR.
    Tallarek U; van Dusschoten D; Van As H; Guiochon G; Bayer E
    Magn Reson Imaging; 1998; 16(5-6):699-702. PubMed ID: 9803944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow and transport studies in (non)consolidated porous (bio)systems consisting of solid or porous beads by PFG NMR.
    Van As H; Palstra W; Tallarek U; Van Dusschoten D
    Magn Reson Imaging; 1998; 16(5-6):569-73. PubMed ID: 9803911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially resolved transport properties in radially compressed bead packings studied by PFG NMR.
    Van Dusschoten D; Tallarek U; Scheenen T; Neue UD; Van As H
    Magn Reson Imaging; 1998; 16(5-6):703-6. PubMed ID: 9803945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsed field gradient NMR measurements of probability distribution of displacement under flow in sphere packings.
    Lebon L; Leblond J; Hulin JP; Martys NS; Schwartz LM
    Magn Reson Imaging; 1996; 14(7-8):989-91. PubMed ID: 8970131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pore network modelling: determination of the dynamic profiles of the pore diffusivity and its effect on column performance as the loading of the solute in the adsorbed phase varies with time.
    Meyers JJ; Crosser OK; Liapis AI
    J Chromatogr A; 2001 Jan; 908(1-2):35-47. PubMed ID: 11218133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network modeling of the convective flow and diffusion of molecules adsorbing in monoliths and in porous particles packed in a chromatographic column.
    Meyers JJ; Liapis AI
    J Chromatogr A; 1999 Aug; 852(1):3-23. PubMed ID: 10480225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using NMR displacement imaging to characterize electroosmotic flow in porous media.
    Tallarek U; Scheenen TW; de Jager PA; Van As H
    Magn Reson Imaging; 2001; 19(3-4):453-6. PubMed ID: 11445329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-gradient pulse investigations of fluid transport in porous media.
    Stapf S; Blümich B
    Magn Reson Imaging; 2001; 19(3-4):385-9. PubMed ID: 11445316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore network modelling of affinity chromatography: determination of the dynamic profiles of the pore diffusivity of beta-galactosidase and its effect on column performance as the loading of beta-galactosidase onto anti-beta-galactosidase varies with time.
    Meyers JJ; Crosser OK; Liapis AI
    J Biochem Biophys Methods; 2001 Oct; 49(1-3):123-39. PubMed ID: 11694276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR diffusometry with guest molecules in nanoporous materials.
    Hwang S; Kärger J
    Magn Reson Imaging; 2019 Feb; 56():3-13. PubMed ID: 30322668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography.
    Gritti F; Horvath K; Guiochon G
    J Chromatogr A; 2012 Nov; 1263():84-98. PubMed ID: 23040978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restricted diffusion in silica particles measured by pulsed field gradient NMR.
    Veith SR; Hughes E; Vuataz G; Pratsinis SE
    J Colloid Interface Sci; 2004 Jun; 274(1):216-28. PubMed ID: 15120296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroosmotic and pressure-driven flow in open and packed capillaries: velocity distributions and fluid dispersion.
    Tallarek U; Rapp E; Scheenen T; Bayer E; Van As H
    Anal Chem; 2000 May; 72(10):2292-301. PubMed ID: 10845377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restricted diffusion and release of aroma molecules from sol-gel-made porous silica particles.
    Veith SR; Hughes E; Pratsinis SE
    J Control Release; 2004 Sep; 99(2):315-27. PubMed ID: 15380640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mass transfer kinetics in columns packed with Halo-ES shell particles.
    Gritti F; Guiochon G
    J Chromatogr A; 2011 Feb; 1218(7):907-21. PubMed ID: 21236440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the mass transfer in totally porous and superficially porous stationary phases in liquid chromatography.
    Kiss I; Bacskay I; Kilár F; Felinger A
    Anal Bioanal Chem; 2010 Jun; 397(3):1307-14. PubMed ID: 20300736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation and measurement of liquid hold-up in biporous media containing discrete stagnant zones.
    Kandhai D; Tallarek U; Hlushkou D; Hoekstra A; Sloot PM; Van As H
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):521-34. PubMed ID: 16214692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel general expressions that describe the behavior of the height equivalent of a theoretical plate in chromatographic systems involving electrically-driven and pressure-driven flows.
    Grimes BA; Lüdtke S; Unger KK; Liapis AI
    J Chromatogr A; 2002 Dec; 979(1-2):447-66. PubMed ID: 12498277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the velocity field of the electroosmotic flow in charged capillaries and in capillary columns packed with charged particles: interstitial and intraparticle velocities in capillary electrochromatography systems.
    Liapis AI; Grimes BA
    J Chromatogr A; 2000 Apr; 877(1-2):181-215. PubMed ID: 10845799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and simulation of the dynamic behavior of monoliths. Effects of pore structure from pore network model analysis and comparison with columns packed with porous spherical particles.
    Liapis AI; Meyers JJ; Crosser OK
    J Chromatogr A; 1999 Dec; 865(1-2):13-25. PubMed ID: 10674927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.