These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 9803947)

  • 1. Field-cycling NMR relaxometry of molecules undergoing Lévy walks at the surface of fine particles and porous glass.
    Zavada T; Stapf S; Beginn U; Kimmich R
    Magn Reson Imaging; 1998; 16(5-6):711-3. PubMed ID: 9803947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field-cycling NMR relaxometry of liquids confined in porous glass: evidence for Levy-walks.
    Stapf S; Kimmich R; Seitter RO
    Magn Reson Imaging; 1996; 14(7-8):841-6. PubMed ID: 8970092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow dynamics in colloidal glasses and porous media as probed by NMR relaxometry: assessment of solvent levy statistics in the strong adsorption regime.
    Levitz PE
    Magn Reson Imaging; 2003; 21(3-4):177-84. PubMed ID: 12850705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-diffusion studies by intra- and inter-molecular spin-lattice relaxometry using field-cycling: Liquids, plastic crystals, porous media, and polymer segments.
    Kimmich R; Fatkullin N
    Prog Nucl Magn Reson Spectrosc; 2017 Aug; 101():18-50. PubMed ID: 28844220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface effects on liquid crystals constrained in nanoscaled pores investigated by field cycling NMR relaxometry and Monte Carlo simulations.
    Grinberg F
    Magn Reson Imaging; 2007 May; 25(4):485-8. PubMed ID: 17466769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saturation-dependent nuclear magnetic resonance relaxation of fluids confined inside porous media with micrometer-sized pores.
    Simina M; Nechifor R; Ardelean I
    Magn Reson Chem; 2011 Jun; 49(6):314-9. PubMed ID: 21452343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface fractals probed by adsorbate spin-lattice relaxation dispersion.
    Zavada T; Kimmich R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5848-54. PubMed ID: 11969565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into adsorption behaviour of binary liquid mixtures in porous media using fast field cycling NMR.
    Ward-Williams J; Gladden LF
    Magn Reson Imaging; 2019 Feb; 56():57-62. PubMed ID: 30228016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure of porous media probed by NMR techniques in sub-micrometer length scales.
    Kimmich R; Stapf S; Callaghan P; Coy A
    Magn Reson Imaging; 1994; 12(2):339-43. PubMed ID: 8170335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translational diffusion of liquids at surface of microporous materials: new theoretical analysis of field cycling magnetic relaxation measurements.
    Korb JP; Hodges MW; Bryant R
    Magn Reson Imaging; 1998; 16(5-6):575-8. PubMed ID: 9803912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations of polymer dynamics in nanoporous media by field cycling NMR relaxometry and the dipolar correlation effect.
    Kausik R; Fatkullin N; Hüsing N; Kimmich R
    Magn Reson Imaging; 2007 May; 25(4):489-92. PubMed ID: 17466770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field-cycling NMR relaxometry of a liquid crystal above in mesoscopic confinement.
    Sebastião PJ; Sousa D; Ribeiro AC; Vilfan M; Lahajnar G; Seliger J; Zumer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061702. PubMed ID: 16485959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial distribution of coke residues in porous catalyst pellets analyzed by field-cycling relaxometry and parameter imaging.
    Stapf S; Ren X; Talnishnikh E; Blümich B
    Magn Reson Imaging; 2005 Feb; 23(2):383-6. PubMed ID: 15833654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-diffusion in fluids in porous glass: confinement by pores and liquid adsorption layers.
    Kimmich R; Stapf S; Maklakov AI; Skirda VD; Khozina EV
    Magn Reson Imaging; 1996; 14(7-8):793-7. PubMed ID: 8970083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid crystal 8CB in random porous glass: NMR relaxometry study of molecular diffusion and director fluctuations.
    Vilfan M; Apih T; Sebastião PJ; Lahajnar G; Zumer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051708. PubMed ID: 18233674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New applications and perspectives of fast field cycling NMR relaxometry.
    Steele RM; Korb JP; Ferrante G; Bubici S
    Magn Reson Chem; 2016 Jun; 54(6):502-9. PubMed ID: 25855084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow dynamics of embedded fluid in mesoscopic confining systems as probed by NMR relaxometry.
    Levitz P; Korb JP; Petit D
    Eur Phys J E Soft Matter; 2003 Sep; 12(1):29-33. PubMed ID: 15007676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular exchange dynamics in partially filled microscale and nanoscale pores of silica glasses studied by field-cycling nuclear magnetic resonance relaxometry.
    Mattea C; Kimmich R; Ardelean I; Wonorahardjo S; Farrher G
    J Chem Phys; 2004 Dec; 121(21):10648-56. PubMed ID: 15549948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model for the interpretation of nuclear magnetic resonance relaxometry of hydrated porous silicate materials.
    Faux DA; Cachia SH; McDonald PJ; Bhatt JS; Howlett NC; Churakov SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032311. PubMed ID: 25871114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR Relaxometry Accessing the Relaxation Spectrum in Molecular Glass Formers.
    Becher M; Lichtinger A; Minikejew R; Vogel M; Rössler EA
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.