These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 9804536)

  • 1. Chronic implantation of a skeletal muscle energy convertor for cardiac assist devices: a preliminary report.
    Reichenbach SH; Gustafson KJ; Khazalpour KM; Farrar DJ; Hill JD
    ASAIO J; 1998; 44(5):M745-9. PubMed ID: 9804536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo studies of an implantable energy convertor for skeletal muscle powered cardiac assist.
    Reichenbach SH; Farrar DJ; Diao E; Hill JD
    ASAIO J; 1997; 43(5):M668-72. PubMed ID: 9360130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a skeletal muscle energy convertor in a chronic animal model.
    Reichenbach SH; Gustafson KJ; Egrie GD; Weidman JR; Farrar DJ; Hill JD
    ASAIO J; 2000; 46(4):482-5. PubMed ID: 10926151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical advantage of skeletal muscle as a cardiac assist power source.
    Farrar DJ; Reichenbach SH; Hill JD
    ASAIO J; 1995; 41(3):M481-4. PubMed ID: 8573851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new skeletal muscle linear-pull energy convertor as a power source for prosthetic circulatory support devices [corrected].
    Farrar DJ; Hill JD
    J Heart Lung Transplant; 1992; 11(5):S341-50. PubMed ID: 1420227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustained skeletal muscle power for cardiac assist devices: implications of metabolic constraints.
    Reichenbach SH; Egrie GD; Marinache SM; Gustafson KJ; Farrar DJ; Hill JD
    ASAIO J; 2001; 47(5):541-7. PubMed ID: 11575834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo measurements of skeletal muscle in a linear configuration powering a hydraulically actuated VAD.
    Farrar DJ; Reichenbach SH; Hill JD
    ASAIO J; 1994; 40(3):M309-13. PubMed ID: 8555530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and work optimization of skeletal muscle as a VAD power source.
    Reichenbach SH; Farrar DJ
    ASAIO J; 1994; 40(3):M359-64. PubMed ID: 8555539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Models of metabolic utilization predict limiting conditions for sustained power from conditioned skeletal muscle.
    Gustafson KJ; Marinache SM; Egrie GD; Reichenbach SH
    Ann Biomed Eng; 2006 May; 34(5):790-8. PubMed ID: 16598656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear performance characteristics of latissimus dorsi muscle: potential for cardiac assistance.
    Gustafson KJ; Guilbeau EJ; Sweeney JD
    ASAIO J; 2003; 49(5):572-7. PubMed ID: 14524567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A permanent prosthesis for converting in situ muscle contractions into hydraulic power for cardiac assist.
    Trumble DR; Magovern JA
    J Appl Physiol (1985); 1997 May; 82(5):1704-11. PubMed ID: 9134922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The muscle-powered dual-chamber counterpulsator: rheologically superior implantable cardiac assist device.
    Kochamba G; Desrosiers C; Dewar M; Chiu RC
    Ann Thorac Surg; 1988 Jun; 45(6):620-5. PubMed ID: 3259863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential mechanisms for muscle-powered cardiac support.
    Trumble DR
    Artif Organs; 2011 Jul; 35(7):715-20. PubMed ID: 21599720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A compressive type skeletal muscle pump as a biomechanical energy source.
    Mizuhara H; Oda T; Koshiji T; Ikeda T; Nishimura K; Nomoto S; Matsuda K; Tsutsui N; Kanda K; Ban T
    ASAIO J; 1996; 42(5):M637-41. PubMed ID: 8944958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive characteristics of conditioned skeletal muscle for ventricular assistance.
    Reichenbach SH; Farrar DJ; Hill JD
    ASAIO J; 1999; 45(4):344-9. PubMed ID: 10445743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo performance of a muscle-powered drive system for implantable blood pumps.
    Trumble DR; Melvin DB; Dean DA; Magovern JA
    ASAIO J; 2008; 54(3):227-32. PubMed ID: 18496270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical characteristics of unconditioned and conditioned latissimus dorsi muscles used for cardiocirculatory assistance.
    Radermecker MA; Chaussende F; Struble C; Grandjean PA; Fourny J; Focant B; Gerard P; Serteyn D; Limet R
    Cardiovasc Surg; 1997 Oct; 5(5):516-25. PubMed ID: 9464610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applicability of the latissimus dorsi muscle in situ as a biomechanical energy source.
    Mizuhara H; Koshiji T; Nishimura K; Nomoto S; Matsuda K; Tsutsui N; Kanda K; Ban T
    ASAIO J; 1995; 41(3):M495-9. PubMed ID: 8573854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a compressive-type skeletal muscle pump for cardiac assistance.
    Mizuhara H; Koshiji T; Nishimura K; Nomoto S; Matsuda K; Ban T
    Ann Thorac Surg; 1999 Jan; 67(1):105-11. PubMed ID: 10086533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ergometric studies of untrained skeletal muscle demonstrate feasibility of muscle-powered cardiac assistance.
    Trumble DR; Magovern JA
    J Appl Physiol (1985); 1994 Oct; 77(4):2036-41. PubMed ID: 7836234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.