These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 9804598)

  • 1. Influence of malonyl-CoA and palmitate concentration on rate of palmitate oxidation in rat muscle.
    Merrill GF; Kurth EJ; Rasmussen BB; Winder WW
    J Appl Physiol (1985); 1998 Nov; 85(5):1909-14. PubMed ID: 9804598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulin stimulation of glucose uptake fails to decrease palmitate oxidation in muscle if AMPK is activated.
    Winder WW; Holmes BF
    J Appl Physiol (1985); 2000 Dec; 89(6):2430-7. PubMed ID: 11090599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle.
    Merrill GF; Kurth EJ; Hardie DG; Winder WW
    Am J Physiol; 1997 Dec; 273(6):E1107-12. PubMed ID: 9435525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle.
    Thomson DM; Brown JD; Fillmore N; Condon BM; Kim HJ; Barrow JR; Winder WW
    Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1572-9. PubMed ID: 17925454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low-intensity muscle contraction.
    Raney MA; Yee AJ; Todd MK; Turcotte LP
    Am J Physiol Endocrinol Metab; 2005 Mar; 288(3):E592-8. PubMed ID: 15547141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of fatty acid oxidation and glucose metabolism in rat soleus muscle: effects of AICAR.
    Kaushik VK; Young ME; Dean DJ; Kurowski TG; Saha AK; Ruderman NB
    Am J Physiol Endocrinol Metab; 2001 Aug; 281(2):E335-40. PubMed ID: 11440910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of hepatic fatty acid oxidation by 5'-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism.
    Velasco G; Geelen MJ; Guzmán M
    Arch Biochem Biophys; 1997 Jan; 337(2):169-75. PubMed ID: 9016810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute regulation of fatty acid oxidation and amp-activated protein kinase in human umbilical vein endothelial cells.
    Dagher Z; Ruderman N; Tornheim K; Ido Y
    Circ Res; 2001 Jun; 88(12):1276-82. PubMed ID: 11420304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside-induced AMP-activated protein kinase phosphorylation inhibits basal and insulin-stimulated glucose uptake, lipid synthesis, and fatty acid oxidation in isolated rat adipocytes.
    Gaidhu MP; Fediuc S; Ceddia RB
    J Biol Chem; 2006 Sep; 281(36):25956-64. PubMed ID: 16816404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation.
    Dzamko N; Schertzer JD; Ryall JG; Steel R; Macaulay SL; Wee S; Chen ZP; Michell BJ; Oakhill JS; Watt MJ; Jørgensen SB; Lynch GS; Kemp BE; Steinberg GR
    J Physiol; 2008 Dec; 586(23):5819-31. PubMed ID: 18845612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of in vivo fatty acid oxidation blockade on glucose turnover and muscle glucose metabolism during low-dose AICAR infusion.
    Christopher M; Rantzau C; Chen ZP; Snow R; Kemp B; Alford FP
    Am J Physiol Endocrinol Metab; 2006 Nov; 291(5):E1131-40. PubMed ID: 16772328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-term AMP-regulated protein kinase activation enhances insulin-sensitive fatty acid uptake and increases the effects of insulin on fatty acid oxidation in L6 muscle cells.
    Kelly KR; Abbott MJ; Turcotte LP
    Exp Biol Med (Maywood); 2010 Apr; 235(4):514-21. PubMed ID: 20407084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation.
    Tomas E; Tsao TS; Saha AK; Murrey HE; Zhang Cc Cc; Itani SI; Lodish HF; Ruderman NB
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16309-13. PubMed ID: 12456889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise.
    Winder WW; Hardie DG
    Am J Physiol; 1996 Feb; 270(2 Pt 1):E299-304. PubMed ID: 8779952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase.
    Kudo N; Barr AJ; Barr RL; Desai S; Lopaschuk GD
    J Biol Chem; 1995 Jul; 270(29):17513-20. PubMed ID: 7615556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insulin inhibition of 5' adenosine monophosphate-activated protein kinase in the heart results in activation of acetyl coenzyme A carboxylase and inhibition of fatty acid oxidation.
    Gamble J; Lopaschuk GD
    Metabolism; 1997 Nov; 46(11):1270-4. PubMed ID: 9361684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic downregulation of AMPK-alpha isoforms uncovers the mechanism by which metformin decreases FA uptake and oxidation in skeletal muscle cells.
    Bogachus LD; Turcotte LP
    Am J Physiol Cell Physiol; 2010 Dec; 299(6):C1549-61. PubMed ID: 20844250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postexercise recovery of skeletal muscle malonyl-CoA, acetyl-CoA carboxylase, and AMP-activated protein kinase.
    Rasmussen BB; Hancock CR; Winder WW
    J Appl Physiol (1985); 1998 Nov; 85(5):1629-34. PubMed ID: 9804562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis.
    Atkinson LL; Fischer MA; Lopaschuk GD
    J Biol Chem; 2002 Aug; 277(33):29424-30. PubMed ID: 12058043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of AMP-activated protein kinase and acetyl-CoA carboxylase phosphorylation by palmitate in skeletal muscle cells.
    Fediuc S; Gaidhu MP; Ceddia RB
    J Lipid Res; 2006 Feb; 47(2):412-20. PubMed ID: 16304351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.