These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 9804766)
1. The fate of the oxidizing tyrosyl radical in the presence of glutathione and ascorbate. Implications for the radical sink hypothesis. Sturgeon BE; Sipe HJ; Barr DP; Corbett JT; Martinez JG; Mason RP J Biol Chem; 1998 Nov; 273(46):30116-21. PubMed ID: 9804766 [TBL] [Abstract][Full Text] [Related]
2. Glutathione and ascorbate reduction of the acetaminophen radical formed by peroxidase. Detection of the glutathione disulfide radical anion and the ascorbyl radical. Ramakrishna Rao DN; Fischer V; Mason RP J Biol Chem; 1990 Jan; 265(2):844-7. PubMed ID: 2153116 [TBL] [Abstract][Full Text] [Related]
3. Generation of superoxide and tyrosine peroxide as a result of tyrosyl radical scavenging by glutathione. Pichorner H; Metodiewa D; Winterbourn CC Arch Biochem Biophys; 1995 Nov; 323(2):429-37. PubMed ID: 7487108 [TBL] [Abstract][Full Text] [Related]
4. Excited species generation in horseradish peroxidase-mediated oxidation of glutathione. Wefers H; Riechmann E; Sies H J Free Radic Biol Med; 1985; 1(4):311-8. PubMed ID: 3013981 [TBL] [Abstract][Full Text] [Related]
5. One- and two-electron oxidation of reduced glutathione by peroxidases. Harman LS; Carver DK; Schreiber J; Mason RP J Biol Chem; 1986 Feb; 261(4):1642-8. PubMed ID: 3003079 [TBL] [Abstract][Full Text] [Related]
6. Evidence for free radical formation during horseradish peroxidase-catalyzed N-demethylation of crystal violet. Gadelha FR; Hanna PM; Mason RP; Docampo R Chem Biol Interact; 1992 Nov; 85(1):35-48. PubMed ID: 1333891 [TBL] [Abstract][Full Text] [Related]
7. Reduction of protein radicals by GSH and ascorbate: potential biological significance. Gebicki JM; Nauser T; Domazou A; Steinmann D; Bounds PL; Koppenol WH Amino Acids; 2010 Nov; 39(5):1131-7. PubMed ID: 20532951 [TBL] [Abstract][Full Text] [Related]
8. One- and two-electron oxidation of reduced glutathione by peroxidases. Mason RP Adv Exp Med Biol; 1986; 197():493-503. PubMed ID: 3020935 [TBL] [Abstract][Full Text] [Related]
9. Electron paramagnetic resonance detection of free tyrosyl radical generated by myeloperoxidase, lactoperoxidase, and horseradish peroxidase. McCormick ML; Gaut JP; Lin TS; Britigan BE; Buettner GR; Heinecke JW J Biol Chem; 1998 Nov; 273(48):32030-7. PubMed ID: 9822676 [TBL] [Abstract][Full Text] [Related]
10. In vitro free radical metabolism of phenolphthalein by peroxidases. Sipe HJ; Corbett JT; Mason RP Drug Metab Dispos; 1997 Apr; 25(4):468-80. PubMed ID: 9107547 [TBL] [Abstract][Full Text] [Related]
11. Glutathione-thiyl radical scavenging and transferase properties of human glutaredoxin (thioltransferase). Potential role in redox signal transduction. Starke DW; Chock PB; Mieyal JJ J Biol Chem; 2003 Apr; 278(17):14607-13. PubMed ID: 12556467 [TBL] [Abstract][Full Text] [Related]
12. Ascorbate is the primary reductant of the phenoxyl radical of etoposide in the presence of thiols both in cell homogenates and in model systems. Kagan VE; Yalowich JC; Day BW; Goldman R; Gantchev TG; Stoyanovsky DA Biochemistry; 1994 Aug; 33(32):9651-60. PubMed ID: 8068642 [TBL] [Abstract][Full Text] [Related]
13. Ascorbate-dependent recycling of the vitamin E homologue Trolox by dihydrolipoate and glutathione in murine skin homogenates. Guo Q; Packer L Free Radic Biol Med; 2000 Aug; 29(3-4):368-74. PubMed ID: 11035266 [TBL] [Abstract][Full Text] [Related]
14. Phenoxyl free radical formation during the oxidation of the fluorescent dye 2',7'-dichlorofluorescein by horseradish peroxidase. Possible consequences for oxidative stress measurements. Rota C; Fann YC; Mason RP J Biol Chem; 1999 Oct; 274(40):28161-8. PubMed ID: 10497168 [TBL] [Abstract][Full Text] [Related]
15. Evidence for the role of a peroxidase compound I-type intermediate in the oxidation of glutathione, NADH, ascorbate, and dichlorofluorescin by cytochrome c/H2O2. Implications for oxidative stress during apoptosis. Lawrence A; Jones CM; Wardman P; Burkitt MJ J Biol Chem; 2003 Aug; 278(32):29410-9. PubMed ID: 12748170 [TBL] [Abstract][Full Text] [Related]
17. Effect of superoxide dismutase mimics on radical adduct formation during the reaction between peroxynitrite and thiols--an ESR-spin trapping study. Karoui H; Hogg N; Joseph J; Kalyanaraman B Arch Biochem Biophys; 1996 Jun; 330(1):115-24. PubMed ID: 8651684 [TBL] [Abstract][Full Text] [Related]
18. Oxidation of glutathione by the superoxide radical to the disulfide and the sulfonate yielding singlet oxygen. Wefers H; Sies H Eur J Biochem; 1983 Dec; 137(1-2):29-36. PubMed ID: 6317388 [TBL] [Abstract][Full Text] [Related]
19. Protein radical formation during lactoperoxidase-mediated oxidation of the suicide substrate glutathione: immunochemical detection of a lactoperoxidase radical-derived 5,5-dimethyl-1-pyrroline N-oxide nitrone adduct. Guo Q; Detweiler CD; Mason RP J Biol Chem; 2004 Mar; 279(13):13272-83. PubMed ID: 14724284 [TBL] [Abstract][Full Text] [Related]