These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9804967)

  • 1. Chain-melting transition temperatures of phospholipids with acylated or alkylated headgroups (N-acyl phosphatidylethanolamines and O-alkyl phosphatidic acids), or with alpha-branched chains.
    Marsh D
    Biochim Biophys Acta; 1998 Nov; 1414(1-2):249-54. PubMed ID: 9804967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential scanning calorimetry of chain-melting phase transitions of N-acylphosphatidylethanolamines.
    Swamy MJ; Marsh D; Ramakrishnan M
    Biophys J; 1997 Nov; 73(5):2556-64. PubMed ID: 9370449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and thermodynamic determinants of chain-melting transition temperatures for phospholipid and glycolipids membranes.
    Marsh D
    Biochim Biophys Acta; 2010 Jan; 1798(1):40-51. PubMed ID: 19853577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic analysis of chain-melting transition temperatures for monounsaturated phospholipid membranes: dependence on cis-monoenoic double bond position.
    Marsh D
    Biophys J; 1999 Aug; 77(2):953-63. PubMed ID: 10423440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the chainlength dependence of lipid phase transition temperatures: main and pretransitions of phosphatidylcholines; main and non-lamellar transitions of phosphatidylethanolamines.
    Marsh D
    Biochim Biophys Acta; 1991 Feb; 1062(1):1-6. PubMed ID: 1998701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential scanning calorimetry of thermotropic phase transitions in vitaminylated lipids: aqueous dispersions of N-biotinyl phosphatidylethanolamines.
    Swamy MJ; Angerstein B; Marsh D
    Biophys J; 1994 Jan; 66(1):31-9. PubMed ID: 8130345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Support for the shape concept of lipid structure based on a headgroup volume approach.
    Lee YC; Taraschi TF; Janes N
    Biophys J; 1993 Oct; 65(4):1429-32. PubMed ID: 8274636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymorphism of the bilayer membranes in the ordered phase and the molecular origin of the lipid pretransition and rippled lamellae.
    Cevc G
    Biochim Biophys Acta; 1991 Feb; 1062(1):59-69. PubMed ID: 1998710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A calorimetric study of the thermotropic behaviour of 1,2-dipentadecylmethylidene phospholipids.
    Blume A; Eibl H
    Biochim Biophys Acta; 1981 Jan; 640(2):609-18. PubMed ID: 7213906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed-chain phospholipids: structures and chain-melting behavior.
    Huang CH
    Lipids; 2001 Oct; 36(10):1077-97. PubMed ID: 11768152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of headgroup methylation and acyl chain length on the volume of melting of phosphatidylethanolamines.
    Mason JT; O'Leary TJ
    Biophys J; 1990 Jul; 58(1):277-81. PubMed ID: 2383637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 31P NMR studies of unsonicated aqueous dispersions of neutral and acidic phospholipids. Effects of phase transitions, p2H and divalent cations on the motion in the phosphate region of the polar headgroup.
    Cullis PR; De Kruyff B
    Biochim Biophys Acta; 1976 Jul; 436(3):523-40. PubMed ID: 952909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexagonal phases in phospholipids with saturated chains: phosphatidylethanolamines and phosphatidic acids.
    Harlos K; Eibl H
    Biochemistry; 1981 May; 20(10):2888-92. PubMed ID: 7248255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the bilayer phase transition temperatures of phosphatidylcholines with mixed chains.
    Marsh D
    Biophys J; 1992 Apr; 61(4):1036-40. PubMed ID: 19431824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of the thermotropic phase behavior of phosphatidylcholines containing 2-alkyl substituted fatty acyl chains: a new class of phosphatidylcholines forming inverted nonlamellar phases.
    Lewis RN; McElhaney RN; Harper PE; Turner DC; Gruner SM
    Biophys J; 1994 Apr; 66(4):1088-103. PubMed ID: 8038381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the bilayer phase transition temperatures for monoenoic phosphatidylcholines and phosphatidylethanolamines and the interconversion between them.
    Huang CH; Li S; Lin HN; Wang G
    Arch Biochem Biophys; 1996 Oct; 334(1):135-42. PubMed ID: 8837748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear magnetic resonance and thermal studies on the interaction between salicylic acid and model membranes.
    Panicker L; Mishra KP
    Biophys Chem; 2006 Mar; 120(1):15-23. PubMed ID: 16263205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miscibility of phospholipids with identical headgroups and acyl chain lengths differing by two methylene units: effects of headgroup structure and headgroup charge.
    Garidel P; Blume A
    Biochim Biophys Acta; 1998 Apr; 1371(1):83-95. PubMed ID: 9565658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-acylphosphatidylethanolamines: effect of the N-acyl chain length on its orientation.
    Lafrance CP; Blochet JE; Pézolet M
    Biophys J; 1997 Jun; 72(6):2559-68. PubMed ID: 9168031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermotropic properties of phospholipid analogues.
    Silvius JR
    Chem Phys Lipids; 1991 Mar; 57(2-3):241-52. PubMed ID: 2054907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.