These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9805201)

  • 1. Comparison of position repeatability of a human operator and an industrial manipulating robot.
    Zupancic J; Bajd T
    Comput Biol Med; 1998 Jul; 28(4):415-21. PubMed ID: 9805201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Wearable IMU System for Flexible Teleoperation of a Collaborative Industrial Robot.
    Škulj G; Vrabič R; Podržaj P
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programming Robots by Demonstration Using Augmented Reality.
    Soares I; Petry M; Moreira AP
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human motion behavior while interacting with an industrial robot.
    Bortot D; Ding H; Antonopolous A; Bengler K
    Work; 2012; 41 Suppl 1():1699-707. PubMed ID: 22316958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of two adjustable-autonomy models on the scalability of single-human/multiple-robot teams for exploration missions.
    Valero-Gomez A; de la Puente P; Hernando M
    Hum Factors; 2011 Dec; 53(6):703-16. PubMed ID: 22235531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional computer-aided human factors engineering analysis of a grafting robot.
    Chiu YC; Chen S; Wu GJ; Lin YH
    J Agric Saf Health; 2012 Jul; 18(3):181-94. PubMed ID: 22900432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pilot study of design method for surgical robot using workspace reproduction system.
    Seno H; Kawamura K; Kobayashi Y; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4542-5. PubMed ID: 22255348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of three different techniques for camera and motion control of a teleoperated robot.
    Doisy G; Ronen A; Edan Y
    Appl Ergon; 2017 Jan; 58():527-534. PubMed ID: 27181096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Integrated Framework for Human-Robot Collaborative Manipulation.
    Sheng W; Thobbi A; Gu Y
    IEEE Trans Cybern; 2015 Oct; 45(10):2030-41. PubMed ID: 25373136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of task decision autonomy on physical ergonomics and robot performances in an industrial human-robot collaboration scenario.
    Pantano M; Yang Q; Blumberg A; Reisch R; Hauser T; Lutz B; Regulin D; Kamps T; Traganos K; Lee D
    Front Robot AI; 2022; 9():943261. PubMed ID: 36237843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Make robot motions natural.
    LaViers A
    Nature; 2019 Jan; 565(7740):422-424. PubMed ID: 30664672
    [No Abstract]   [Full Text] [Related]  

  • 12. Worker selection of safe speed and idle condition in simulated monitoring of two industrial robots.
    Karwowski W; Rahimi M
    Ergonomics; 1991 May; 34(5):531-46. PubMed ID: 1884709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human-Robot Interface for Embedding Sliding Adjustable Autonomy Methods.
    Sfair Palar P; de Vargas Terres V; Schneider de Oliveira A
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33096859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An operator interface for teleprogramming employing synthetic fixtures.
    Sayers CP; Paul RP
    Presence (Camb); 1994; 3(4):309-20. PubMed ID: 11539344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and evaluation of design guidelines for cognitive ergonomics in human-robot collaborative assembly systems.
    Gualtieri L; Fraboni F; De Marchi M; Rauch E
    Appl Ergon; 2022 Oct; 104():103807. PubMed ID: 35763990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of laparoscopic and robotic assisted suturing performance by experts and novices.
    Chandra V; Nehra D; Parent R; Woo R; Reyes R; Hernandez-Boussard T; Dutta S
    Surgery; 2010 Jun; 147(6):830-9. PubMed ID: 20045162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological and subjective evaluation of a human-robot object hand-over task.
    Dehais F; Sisbot EA; Alami R; Causse M
    Appl Ergon; 2011 Nov; 42(6):785-91. PubMed ID: 21296335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating physical assistance need using a musculoskeletal model.
    Carmichael MG; Liu D
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1912-9. PubMed ID: 23380850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of reaching movements of upper arm in robot assisted exercises. Kinematic assessment of robot assisted upper arm reaching single-joint movements.
    Iuppariello L; D'Addio G; Romano M; Bifulco P; Lanzillo B; Pappone N; Cesarelli M
    G Ital Med Lav Ergon; 2016; 38(2):116-27. PubMed ID: 27459844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Real-Time Human-Robot Collaborative System Based on 1 kHz Visual Feedback Control and Its Application to a Peg-in-Hole Task.
    Yamakawa Y; Matsui Y; Ishikawa M
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33478053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.