BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9805272)

  • 1. Programmed cell death of identified peptidergic neurons involved in ecdysis behavior in the Moth, Manduca sexta.
    Ewer J; Wang CM; Klukas KA; Mesce KA; Truman JW; Fahrbach SE
    J Neurobiol; 1998 Nov; 37(2):265-80. PubMed ID: 9805272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Invariant association of ecdysis with increases in cyclic 3',5'-guanosine monophosphate immunoreactivity in a small network of peptidergic neurons in the hornworm, Manduca sexta.
    Ewer J; Truman JW
    J Comp Physiol A; 1997 Oct; 181(4):319-30. PubMed ID: 9342855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increases in cyclic 3', 5'-guanosine monophosphate (cGMP) occur at ecdysis in an evolutionarily conserved crustacean cardioactive peptide-immunoreactive insect neuronal network.
    Ewer J; Truman JW
    J Comp Neurol; 1996 Jul; 370(3):330-41. PubMed ID: 8799859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuropeptide hierarchies and the activation of sequential motor behaviors in the hawkmoth, Manduca sexta.
    Gammie SC; Truman JW
    J Neurosci; 1997 Jun; 17(11):4389-97. PubMed ID: 9151755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted ablation of CCAP neuropeptide-containing neurons of Drosophila causes specific defects in execution and circadian timing of ecdysis behavior.
    Park JH; Schroeder AJ; Helfrich-Förster C; Jackson FR; Ewer J
    Development; 2003 Jun; 130(12):2645-56. PubMed ID: 12736209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eclosion hormone provides a link between ecdysis-triggering hormone and crustacean cardioactive peptide in the neuroendocrine cascade that controls ecdysis behavior.
    Gammie SC; Truman JW
    J Exp Biol; 1999 Feb; 202(Pt 4):343-52. PubMed ID: 9914143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central peptidergic ensembles associated with organization of an innate behavior.
    Kim YJ; Zitnan D; Cho KH; Schooley DA; Mizoguchi A; Adams ME
    Proc Natl Acad Sci U S A; 2006 Sep; 103(38):14211-6. PubMed ID: 16968777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of ecdysis in the moth Manduca sexta: the roles of the suboesophageal and thoracic ganglia.
    Fuse M; Truman JW
    J Exp Biol; 2002 Apr; 205(Pt 8):1047-58. PubMed ID: 11919264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel mouse IgG-like immunoreactivity expressed by neurons in the moth Manduca sexta: developmental regulation and colocalization with crustacean cardioactive peptide.
    Klukas KA; Brelje TC; Mesce KA
    Microsc Res Tech; 1996 Oct; 35(3):242-64. PubMed ID: 8956273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of myoinhibitory peptide immunoreactivity in Manduca sexta and Bombyx mori, with indications that the peptide has a role in molting and ecdysis.
    Davis NT; Blackburn MB; Golubeva EG; Hildebrand JG
    J Exp Biol; 2003 May; 206(Pt 9):1449-60. PubMed ID: 12654884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification, sequence and expression of a crustacean cardioactive peptide (CCAP) gene in the moth Manduca sexta.
    Loi PK; Emmal SA; Park Y; Tublitz NJ
    J Exp Biol; 2001 Aug; 204(Pt 16):2803-16. PubMed ID: 11683436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles.
    Kim YJ; Zitnan D; Galizia CG; Cho KH; Adams ME
    Curr Biol; 2006 Jul; 16(14):1395-407. PubMed ID: 16860738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hormonal coordination of behavior and physiology at adult ecdysis in Drosophila melanogaster.
    Baker JD; McNabb SL; Truman JW
    J Exp Biol; 1999 Nov; 202(Pt 21):3037-48. PubMed ID: 10518485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracting temporal relationships between weakly coupled peptidergic and motoneuronal signaling: Application to Drosophila ecdysis behavior.
    Piñeiro M; Mena W; Ewer J; Orio P
    PLoS Comput Biol; 2021 Dec; 17(12):e1008933. PubMed ID: 34910730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The initiation of pre-ecdysis and ecdysis behaviors in larval Manduca sexta: the roles of the brain, terminal ganglion and eclosion hormone.
    Novicki A; Weeks JC
    J Exp Biol; 1996 Aug; 199(Pt 8):1757-69. PubMed ID: 8708579
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Simon E; de la Puebla SF; Guerrero I
    Open Biol; 2019 Dec; 9(12):190245. PubMed ID: 31847787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental attenuation of Manduca pre-ecdysis behavior involves neural changes upstream of motoneurons and relay interneurons.
    Novicki A; Weeks JC
    J Comp Physiol A; 2000 Jan; 186(1):69-79. PubMed ID: 10659044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian regulation of the lark RNA-binding protein within identifiable neurosecretory cells.
    Zhang X; McNeil GP; Hilderbrand-Chae MJ; Franklin TM; Schroeder AJ; Jackson FR
    J Neurobiol; 2000 Oct; 45(1):14-29. PubMed ID: 10992253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of ecdysis-triggering hormone release by eclosion hormone.
    Kingan TG; Gray W; Zitnan D; Adams ME
    J Exp Biol; 1997 Dec; 200(Pt 24):3245-56. PubMed ID: 9364030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different actions of ecdysis-triggering hormone on the brain and ventral nerve cord of the hornworm, Manduca sexta.
    Asuncion-Uchi M; El Shawa H; Martin T; Fuse M
    Gen Comp Endocrinol; 2010 Mar; 166(1):54-65. PubMed ID: 19699740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.