These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9805368)

  • 1. Xylose transport insensitivity to catabolite inhibition by phosphoenolpyruvate:sugar phosphotransferase system in Tetragenococcus halophila.
    Abe K; Higuchi T; Yamato I
    Biosci Biotechnol Biochem; 1998 Sep; 62(9):1676-83. PubMed ID: 9805368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective fermentation of xylose by a mutant of Tetragenococcus halophila defective in phosphoenolpyruvate:mannose phosphotransferase, phosphofructokinase, and glucokinase.
    Abe K; Higuchi T
    Biosci Biotechnol Biochem; 1998 Oct; 62(10):2062-4. PubMed ID: 9836445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.
    Simoni RD; Roseman S; Saier MH
    J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological studies on regulation of glycerol utilization by the phosphoenolpyruvate:sugar phosphotransferase system in Enterococcus faecalis.
    Romano AH; Saier MH; Harriott OT; Reizer J
    J Bacteriol; 1990 Dec; 172(12):6741-8. PubMed ID: 2123855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of glucose-mediated catabolite repression due to a defect in the membrane fraction of phosphoenolpyruvate: mannose phosphotransferase system in Pediococcus halophilus.
    Abe K; Uchida K
    Arch Microbiol; 1991; 155(6):517-20. PubMed ID: 1953293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between depression of catabolite control of xylose metabolism and a defect in the phosphoenolpyruvate:mannose phosphotransferase system in Pediococcus halophilus.
    Abe K; Uchida K
    J Bacteriol; 1989 Apr; 171(4):1793-800. PubMed ID: 2703460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of glycerol uptake by the phosphoenolpyruvate-sugar phosphotransferase system in Bacillus subtilis.
    Reizer J; Novotny MJ; Stuiver I; Saier MH
    J Bacteriol; 1984 Jul; 159(1):243-50. PubMed ID: 6429122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-PTS uptake and subsequent metabolism of glucose in Pediococcus halophilus as demonstrated with a double mutant defective in phosphoenolpyruvate:mannose phosphotransferase system and in phosphofructokinase.
    Abe K; Uchida K
    Arch Microbiol; 1990; 153(6):537-40. PubMed ID: 2142414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system.
    Cvitkovitch DG; Boyd DA; Thevenot T; Hamilton IR
    J Bacteriol; 1995 May; 177(9):2251-8. PubMed ID: 7730250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity of Streptococcus salivarius ptsH mutants that can be isolated in the presence of 2-deoxyglucose and galactose and characterization of two mutants synthesizing reduced levels of HPr, a phosphocarrier of the phosphoenolpyruvate:sugar phosphotransferase system.
    Thomas S; Brochu D; Vadeboncoeur C
    J Bacteriol; 2001 Sep; 183(17):5145-54. PubMed ID: 11489868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar transport. 2nducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate:sugar phosphotransferase system.
    Saier MH; Roseman S
    J Biol Chem; 1976 Nov; 251(21):6606-15. PubMed ID: 789370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of competence development and sugar utilization in Haemophilus influenzae Rd by a phosphoenolpyruvate:fructose phosphotransferase system.
    Macfadyen LP; Dorocicz IR; Reizer J; Saier MH; Redfield RJ
    Mol Microbiol; 1996 Sep; 21(5):941-52. PubMed ID: 8885265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions in vivo between IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system and the glycerol and maltose uptake systems of Salmonella typhimurium.
    Nelson SO; Postma PW
    Eur J Biochem; 1984 Feb; 139(1):29-34. PubMed ID: 6365546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of the ptsI gene encoding enzyme I of the sugar phosphotransferase system of Streptococcus salivarius: effects on growth and urease expression.
    Weaver CA; Chen YM; Burne RA
    Microbiology (Reading); 2000 May; 146 ( Pt 5)():1179-1185. PubMed ID: 10832646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose consumption in carbohydrate mixtures by phosphotransferase-system mutants of Escherichia coli.
    Xia T; Sriram N; Lee SA; Altman R; Urbauer JL; Altman E; Eiteman MA
    Microbiology (Reading); 2017 Jun; 163(6):866-877. PubMed ID: 28640743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis.
    Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M
    J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive evolution of Escherichia coli inactivated in the phosphotransferase system operon improves co-utilization of xylose and glucose under anaerobic conditions.
    Balderas-Hernández VE; Hernández-Montalvo V; Bolívar F; Gosset G; Martínez A
    Appl Biochem Biotechnol; 2011 Feb; 163(4):485-96. PubMed ID: 20740380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphotransferase system sugars immediately induce mutations of Cra in an Escherichia coli ptsH mutant.
    Min H; Seok YJ
    Environ Microbiol; 2022 Nov; 24(11):5425-5436. PubMed ID: 36251433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of the regulation of glycerol and maltose metabolism by IIAGlc of the phosphoenolpyruvate-dependent glucose phosphotransferase system in Salmonella typhimurium.
    van der Vlag J; van Dam K; Postma PW
    J Bacteriol; 1994 Jun; 176(12):3518-26. PubMed ID: 8206828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.