BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 9806227)

  • 1. Lithium homeostasis in Xenopus oocytes: implications for the study of signal transduction.
    Gomez JR; Karkanias NB; Lenox RH; Papke RL
    Life Sci; 1998; 63(19):1715-24. PubMed ID: 9806227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithium transport pathways in human red blood cells.
    Pandey GN; Sarkadi B; Haas M; Gunn RB; Davis JM; Tosteson DC
    J Gen Physiol; 1978 Aug; 72(2):233-47. PubMed ID: 690597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and stoichiometry of Na-dependent Li transport in human red blood cells.
    Sarkadi B; Alifimoff JK; Gunn RB; Tosteson DC
    J Gen Physiol; 1978 Aug; 72(2):249-65. PubMed ID: 690598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abnormal lithium and sodium transport in erythrocytes of a manic patient and some members of his family.
    Pandey GN; Ostrow DG; Haas M; Dorus E; Casper RC; Davis JM; Tosteson DC
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3607-11. PubMed ID: 269417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione transport in immortalized HLE cells and expression of transport in HLE cell poly(A)+ RNA-injected Xenopus laevis oocytes.
    Kannan R; Bao Y; Mittur A; Andley UP; Kaplowitz N
    Invest Ophthalmol Vis Sci; 1998 Jul; 39(8):1379-86. PubMed ID: 9660486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Li+ uptake into Xenopus and Cynops oocytes injected with exogenous mRNA, observed by flame emission spectroscopy.
    Aoshima H; Iio H; Kobayashi S
    Anal Biochem; 1986 Jul; 156(1):257-62. PubMed ID: 3740415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na-dependent Li-transport in primary nerve cell cultures.
    Szentistványi I; Janka Z; Joó F; Rimanóczy A; Juhász A; Latzkovits L
    Neurosci Lett; 1979 Jul; 13(2):157-61. PubMed ID: 575197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium transport by fibroblastic mouse cells: characterization and stimulation by serum and growth factors in quiescent cultures.
    Smith JB; Rozengurt E
    J Cell Physiol; 1978 Dec; 97(3 Pt 2 Suppl 1):441-9. PubMed ID: 730779
    [No Abstract]   [Full Text] [Related]  

  • 9. Properties of a sodium channel (Na(x)) activated by strong depolarization of Xenopus oocytes.
    Vasilyev A; Indyk E; Rakowski RF
    J Membr Biol; 2002 Feb; 185(3):237-47. PubMed ID: 11891581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permeability and the mechanism of transport of boric acid across the plasma membrane of Xenopus laevis oocytes.
    Dordas C; Brown PH
    Biol Trace Elem Res; 2001 Aug; 81(2):127-39. PubMed ID: 11554394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium uptake at physiological ion concentrations in a human clonal neuroblastoma cell line.
    Saneto RP; Srivastava SK; Werrbach-Perez K; Perez-Polo JR
    J Neurochem; 1980 Jun; 34(6):1520-1. PubMed ID: 7381474
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of a Na(+)-K(+)-2Cl- cotransport system in oocytes from Xenopus laevis.
    Shetlar RE; Schölermann B; Morrison AI; Kinne RK
    Biochim Biophys Acta; 1990 Apr; 1023(2):184-90. PubMed ID: 2158348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of polyamine spermidine uptake by Xenopus laevis oocytes.
    Khan NA; Quemener V; Havouis R; Moulinoux JP
    Biochem Int; 1990; 21(4):607-13. PubMed ID: 2241986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An endogenous carrier-mediated uptake system for folate in oocytes of Xenopus laevis.
    Lo RS; Said HM; Unger TF; Hollander D; Miledi R
    Proc Biol Sci; 1991 Nov; 246(1316):161-5. PubMed ID: 1685241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na(+)-H+ and Na(+)-Li+ exchange are mediated by the same membrane transport protein in human red blood cells: an NMR investigation.
    Chi Y; Mo S; Mota de Freitas D
    Biochemistry; 1996 Sep; 35(38):12433-42. PubMed ID: 8823178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different signaling pathway between sphingosine-1-phosphate and lysophosphatidic acid in Xenopus oocytes: functional coupling of the sphingosine-1-phosphate receptor to PLC-xbeta in Xenopus oocytes.
    Noh SJ; Kim MJ; Shim S; Han JK
    J Cell Physiol; 1998 Aug; 176(2):412-23. PubMed ID: 9648929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xoom: a novel oocyte membrane protein maternally expressed and involved in the gastrulation movement of Xenopus embryos.
    Hasegawa K; Shiraishi T; Kinoshita T
    Int J Dev Biol; 1999 Sep; 43(6):479-85. PubMed ID: 10610020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc uptake and distribution in Xenopus laevis oocytes and embryos.
    Falchuk KH; Montorzi M; Vallee BL
    Biochemistry; 1995 Dec; 34(50):16524-31. PubMed ID: 8845382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ouabain-insensitive sodium/lithium exchange and the effect of anti-L in low potassium sheep erythrocytes.
    Duhm J; Becker BF; Lauf PK
    Life Sci; 1980 Apr; 26(15):1217-22. PubMed ID: 6248706
    [No Abstract]   [Full Text] [Related]  

  • 20. Signal transduction pathways triggered by fibroblast growth factor receptor 1 expressed in Xenopus laevis oocytes after fibroblast growth factor 1 addition. Role of Grb2, phosphatidylinositol 3-kinase, Src tyrosine kinase, and phospholipase Cgamma.
    Browaeys-Poly E; Cailliau K; Vilain JP
    Eur J Biochem; 2000 Oct; 267(20):6256-63. PubMed ID: 11012680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.