BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 9806850)

  • 1. Assignment of mouse inwardly rectifying potassium channel Kcnj16 to the distal region of mouse chromosome 11.
    Mouri T; Kittaka N; Horio Y; Copeland NG; Gilbert DJ; Jenkins NA; Kurachi Y
    Genomics; 1998 Nov; 54(1):181-2. PubMed ID: 9806850
    [No Abstract]   [Full Text] [Related]  

  • 2. Assignment of the glial inwardly rectifying potassium channel KAB-2/Kir4.1 (Kcnj10) gene to the distal region of mouse chromosome 1.
    Tada Y; Horio Y; Takumi T; Terayama M; Tsuji L; Copeland NG; Jenkins NA; Kurachi Y
    Genomics; 1997 Nov; 45(3):629-30. PubMed ID: 9367690
    [No Abstract]   [Full Text] [Related]  

  • 3. Assignment of mouse cardiac two-pore background K+ channel gene (Kcnk4) to the proximal region of mouse chromosome 5.
    Fujita A; Horio Y; Copeland NG; Gilbert DJ; Jenkins NA; Kurachi Y
    Genomics; 1998 Nov; 54(1):183-4. PubMed ID: 9806851
    [No Abstract]   [Full Text] [Related]  

  • 4. Assignment of human G-protein-coupled inward rectifier K+ channel homolog GIRK3 gene to chromosome 1q21-q23.
    Lesage F; Fink M; Barhanin J; Lazdunski M; Mattéi MG
    Genomics; 1995 Oct; 29(3):808-9. PubMed ID: 8575783
    [No Abstract]   [Full Text] [Related]  

  • 5. Assignment of the murine inward rectifier potassium channel Irk2 (Kir2.2) gene to the central region of mouse chromosome 11.
    Takumi T; Tsuji L; Kondo C; Takahashi N; Morishige K; Copeland NG; Gilbert DJ; Jenkins NA; Kurachi Y
    Genomics; 1996 Oct; 37(2):270-2. PubMed ID: 8921409
    [No Abstract]   [Full Text] [Related]  

  • 6. Assignment of the murine inwardly rectifying potassium channel IRK3 gene (Kcnj4) to the mouse chromosome 15.
    Morishige K; Takumi T; Takahashi N; Koyama H; Kurachi H; Miyake A; Murata Y; Copeland NG; Gilbert DJ; Jenkins NA; Kurachi Y
    Mamm Genome; 1997 Sep; 8(9):699-700. PubMed ID: 9271678
    [No Abstract]   [Full Text] [Related]  

  • 7. Partial gene structure and assignment to chromosome 2q37 of the human inwardly rectifying K+ channel (Kir7.1) gene (KCNJ13).
    Derst C; Döring F; Preisig-Müller R; Daut J; Karschin A; Jeck N; Weber S; Engel H; Grzeschik KH
    Genomics; 1998 Dec; 54(3):560-3. PubMed ID: 9878260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sur2 and Kcnj8 genes are tightly linked on the distal region of mouse chromosome 6.
    Isomoto S; Horio Y; Matsumoto S; Kondo C; Yamada M; Gilbert DJ; Copeland NG; Jenkins NA; Kurachi Y
    Mamm Genome; 1997 Oct; 8(10):790-1. PubMed ID: 9321483
    [No Abstract]   [Full Text] [Related]  

  • 9. Potassium channels as targets for ethanol: studies of G-protein-coupled inwardly rectifying potassium channel 2 (GIRK2) null mutant mice.
    Blednov YA; Stoffel M; Chang SR; Harris RA
    J Pharmacol Exp Ther; 2001 Aug; 298(2):521-30. PubMed ID: 11454913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol opens G-protein-activated inwardly rectifying K+ channels.
    Kobayashi T; Ikeda K; Kojima H; Niki H; Yano R; Yoshioka T; Kumanishi T
    Nat Neurosci; 1999 Dec; 2(12):1091-7. PubMed ID: 10570486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The weaver GIRK2 mutation leads to decreased levels of serum thyroid hormone: characterization of the effect on midbrain dopaminergic neuron survival.
    Blum M; Weickert C; Carrasco E
    Exp Neurol; 1999 Dec; 160(2):413-24. PubMed ID: 10619558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of a mutation in the H5 domain of Girk2 as a candidate for the weaver mutation.
    Mjaatvedt AE; Cabin DE; Cole SE; Long LJ; Breitwieser GE; Reeves RH
    Genome Res; 1995 Dec; 5(5):453-63. PubMed ID: 8808466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperactivity and dopamine D1 receptor activation in mice lacking girk2 channels.
    Blednov YA; Stoffel M; Cooper R; Wallace D; Mane N; Harris RA
    Psychopharmacology (Berl); 2002 Feb; 159(4):370-8. PubMed ID: 11823889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assignment of the gene encoding inwardly rectifying potassium channel, subfamily J, member 3 (Kcnj3) to rat chromosome 3q32 by in situ hybridization and radiation hybrid mapping.
    Kreutz R; Zürcher H; Szpirer J; Paul M; Szpirer C
    Cytogenet Cell Genet; 1999; 87(3-4):269-70. PubMed ID: 10702690
    [No Abstract]   [Full Text] [Related]  

  • 15. G protein regulation of potassium ion channels.
    Yamada M; Inanobe A; Kurachi Y
    Pharmacol Rev; 1998 Dec; 50(4):723-60. PubMed ID: 9860808
    [No Abstract]   [Full Text] [Related]  

  • 16. Inwardly rectifying potassium channels.
    Reimann F; Ashcroft FM
    Curr Opin Cell Biol; 1999 Aug; 11(4):503-8. PubMed ID: 10449331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning, structure and assignment to chromosome 19q13 of the human Kir2.4 inwardly rectifying potassium channel gene (KCNJ14).
    Töpert C; Döring F; Derst C; Daut J; Grzeschik KH; Karschin A
    Mamm Genome; 2000 Mar; 11(3):247-9. PubMed ID: 10723734
    [No Abstract]   [Full Text] [Related]  

  • 18. Chromosomal mapping of the potassium channel genes Kcnq2 and Kcnq3 in mouse.
    McCormack T; Rudy B; Seldin MF
    Genomics; 1999 Mar; 56(3):360-1. PubMed ID: 10087209
    [No Abstract]   [Full Text] [Related]  

  • 19. G-protein-coupled inwardly rectifying potassium channels are targets of alcohol action.
    Lewohl JM; Wilson WR; Mayfield RD; Brozowski SJ; Morrisett RA; Harris RA
    Nat Neurosci; 1999 Dec; 2(12):1084-90. PubMed ID: 10570485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of potassium channel gene Kcnj10 in ethanol preference in C57bl/6J and DBA/2J mice.
    Zou SB; Weng J; Symons MN; Singh SM
    Alcohol Clin Exp Res; 2009 Mar; 33(3):394-9. PubMed ID: 19053975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.