BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 9806932)

  • 1. Developmentally regulated nuclear transport of transcription factors in Drosophila embryos enable the heat shock response.
    Wang Z; Lindquist S
    Development; 1998 Dec; 125(23):4841-50. PubMed ID: 9806932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative and competitive protein interactions at the hsp70 promoter.
    Mason PB; Lis JT
    J Biol Chem; 1997 Dec; 272(52):33227-33. PubMed ID: 9407112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila.
    Wu CH; Yamaguchi Y; Benjamin LR; Horvat-Gordon M; Washinsky J; Enerly E; Larsson J; Lambertsson A; Handa H; Gilmour D
    Genes Dev; 2003 Jun; 17(11):1402-14. PubMed ID: 12782658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct stress-inducible and developmentally regulated heat shock transcription factors in Xenopus oocytes.
    Gordon S; Bharadwaj S; Hnatov A; Ali A; Ovsenek N
    Dev Biol; 1997 Jan; 181(1):47-63. PubMed ID: 9015264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium salicylate decreases intracellular ATP, induces both heat shock factor binding and chromosomal puffing, but does not induce hsp 70 gene transcription in Drosophila.
    Winegarden NA; Wong KS; Sopta M; Westwood JT
    J Biol Chem; 1996 Oct; 271(43):26971-80. PubMed ID: 8900183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana.
    Lee JH; Schöffl F
    Mol Gen Genet; 1996 Aug; 252(1-2):11-9. PubMed ID: 8804399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental regulation of the heat shock response by nuclear transport factor karyopherin-alpha3.
    Fang X; Chen T; Tran K; Parker CS
    Development; 2001 Sep; 128(17):3349-58. PubMed ID: 11546751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sea urchin HSF activity in vitro and in transgenic embryos.
    Sconzo G; Geraci F; Melfi R; Cascino D; Spinelli G; Giudice G; Sirchia R
    Biochem Biophys Res Commun; 1997 Nov; 240(2):436-41. PubMed ID: 9388497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock.
    Boehm AK; Saunders A; Werner J; Lis JT
    Mol Cell Biol; 2003 Nov; 23(21):7628-37. PubMed ID: 14560008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the involvement of mouse heat shock factor 1 in the atypical expression of the HSP70.1 heat shock gene during mouse zygotic genome activation.
    Christians E; Michel E; Adenot P; Mezger V; Rallu M; Morange M; Renard JP
    Mol Cell Biol; 1997 Feb; 17(2):778-88. PubMed ID: 9001232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Kinetics of heat shock response upon disfunction of general transcription factor (HSF)].
    Funikov SIu; Garbuz DG; Zatsepina OG
    Mol Biol (Mosk); 2014; 48(2):306-13. PubMed ID: 25850300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites.
    Shopland LS; Hirayoshi K; Fernandes M; Lis JT
    Genes Dev; 1995 Nov; 9(22):2756-69. PubMed ID: 7590251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HSFs and regulation of Hsp70.1 (Hspa1b) in oocytes and preimplantation embryos: new insights brought by transgenic and knockout mouse models.
    Le Masson F; Christians E
    Cell Stress Chaperones; 2011 May; 16(3):275-85. PubMed ID: 21053113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examination of the DNA sequence-specific binding properties of heat shock transcription factor in Xenopus laevis embryos.
    Karn H; Ovsenek N; Heikkila JJ
    Biochem Cell Biol; 1992; 70(10-11):1006-13. PubMed ID: 1297327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmentally dictated expression of heat shock factors: exclusive expression of HSF4 in the postnatal lens and its specific interaction with alphaB-crystallin heat shock promoter.
    Somasundaram T; Bhat SP
    J Biol Chem; 2004 Oct; 279(43):44497-503. PubMed ID: 15308659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early transcriptional activation of the hsp70.1 gene by osmotic stress in one-cell embryos of the mouse.
    Fiorenza MT; Bevilacqua A; Canterini S; Torcia S; Pontecorvi M; Mangia F
    Biol Reprod; 2004 Jun; 70(6):1606-13. PubMed ID: 14766729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamine enhances heat shock protein 70 expression via increased hexosamine biosynthetic pathway activity.
    Hamiel CR; Pinto S; Hau A; Wischmeyer PE
    Am J Physiol Cell Physiol; 2009 Dec; 297(6):C1509-19. PubMed ID: 19776393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between heat shock factor and hsp70 is insufficient to suppress induction of DNA-binding activity in vivo.
    Rabindran SK; Wisniewski J; Li L; Li GC; Wu C
    Mol Cell Biol; 1994 Oct; 14(10):6552-60. PubMed ID: 7935376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory selection at different temperatures modifies heat-shock transcription factor (HSF) activation in Drosophila melanogaster.
    Lerman DN; Feder ME
    J Exp Biol; 2001 Jan; 204(Pt 2):315-23. PubMed ID: 11136617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster.
    Gonsalves SE; Moses AM; Razak Z; Robert F; Westwood JT
    PLoS One; 2011 Jan; 6(1):e15934. PubMed ID: 21264254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.