These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 9808308)

  • 21. Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat.
    Cazalets JR; Sqalli-Houssaini Y; Clarac F
    J Physiol; 1992 Sep; 455():187-204. PubMed ID: 1362441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of locomotion in vitro: II. Chemical stimulation.
    Atsuta Y; Abraham P; Iwahara T; Garcia-Rill E; Skinner RD
    Somatosens Mot Res; 1991; 8(1):55-63. PubMed ID: 1710860
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-threshold, short-latency cutaneous reflexes during fictive locomotion in the "semi-chronic" spinal cat.
    LaBella LA; Niechaj A; Rossignol S
    Exp Brain Res; 1992; 91(2):236-48. PubMed ID: 1459226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of short latency cutaneous excitation in flexor and extensor motoneurons during fictive locomotion in the cat.
    Schmidt BJ; Meyers DE; Tokuriki M; Burke RE
    Exp Brain Res; 1989; 77(1):57-68. PubMed ID: 2792270
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Late prolonged discharges in the motor nerves of the hindlimbs and their relationship to locomotor rhythmicity in thalamically immobilized cats].
    Baev KV; Degtiarenko AM; Zavadskaia TV
    Neirofiziologiia; 1979; 11(2):137-45. PubMed ID: 440486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction between disinhibited bursting and fictive locomotor patterns in the rat isolated spinal cord.
    Beato M; Nistri A
    J Neurophysiol; 1999 Nov; 82(5):2029-38. PubMed ID: 10561384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Locomotor rhythm evoked by ventrolateral funiculus stimulation in the neonatal rat spinal cord in vitro.
    Magnuson DS; Trinder TC
    J Neurophysiol; 1997 Jan; 77(1):200-6. PubMed ID: 9120561
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Repetitive optogenetic stimulation of glutamatergic neurons: An alternative to NMDA treatment for generating locomotor activity in spinalized zebrafish larvae.
    Montgomery JE; Wahlstrom-Helgren S; Vanpelt KT; Masino MA
    Physiol Rep; 2021 Mar; 9(6):e14774. PubMed ID: 33769694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pattern generation in caudal-lumbar and sacrococcygeal segments of the neonatal rat spinal cord.
    Gabbay H; Delvolvé I; Lev-Tov A
    J Neurophysiol; 2002 Aug; 88(2):732-9. PubMed ID: 12163525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peripheral and central control of flexor digitorum longus and flexor hallucis longus motoneurons: the synaptic basis of functional diversity.
    Fleshman JW; Lev-Tov A; Burke RE
    Exp Brain Res; 1984; 54(1):133-49. PubMed ID: 6321220
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects from fine muscle and cutaneous afferents on spinal locomotion in cats.
    Kniffki KD; Schomburg ED; Steffens H
    J Physiol; 1981; 319():543-54. PubMed ID: 7320927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cervicolumbar coordination in mammalian quadrupedal locomotion: role of spinal thoracic circuitry and limb sensory inputs.
    Juvin L; Le Gal JP; Simmers J; Morin D
    J Neurosci; 2012 Jan; 32(3):953-65. PubMed ID: 22262893
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fictive hindlimb motor patterns evoked by AMPA and NMDA in turtle spinal cord-hindlimb nerve preparations.
    Currie SN
    J Physiol Paris; 1999; 93(3):199-211. PubMed ID: 10399675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alternating rhythmic activity induced by dorsal root stimulation in the neonatal rat spinal cord in vitro.
    Marchetti C; Beato M; Nistri A
    J Physiol; 2001 Jan; 530(Pt 1):105-12. PubMed ID: 11136862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disynaptic group I excitation of synergist ankle extensor motoneurones during fictive locomotion in the cat.
    McCrea DA; Shefchyk SJ; Stephens MJ; Pearson KG
    J Physiol; 1995 Sep; 487 ( Pt 2)(Pt 2):527-39. PubMed ID: 8558481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stumbling corrective reaction during fictive locomotion in the cat.
    Quevedo J; Stecina K; Gosgnach S; McCrea DA
    J Neurophysiol; 2005 Sep; 94(3):2045-52. PubMed ID: 15917325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid recovery and altered neurochemical dependence of locomotor central pattern generation following lumbar neonatal spinal cord injury.
    Züchner M; Kondratskaya E; Sylte CB; Glover JC; Boulland JL
    J Physiol; 2018 Jan; 596(2):281-303. PubMed ID: 29086918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phasic modulation of trunk muscle efferents during fictive spinal locomotion in cats.
    Koehler WJ; Schomburg ED; Steffens H
    J Physiol; 1984 Aug; 353():187-97. PubMed ID: 6237190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bulbospinal control of spinal cord pathways generating locomotor extensor activities in the cat.
    Leblond H; Menard A; Gossard JP
    J Physiol; 2000 May; 525 Pt 1(Pt 1):225-40. PubMed ID: 10811739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whole cell recordings of lumbar motoneurons during locomotor-like activity in the in vitro neonatal rat spinal cord.
    Hochman S; Schmidt BJ
    J Neurophysiol; 1998 Feb; 79(2):743-52. PubMed ID: 9463437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.