These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 9808759)
1. Effect of citrulline for arginine replacement on the structure and turnover of phosphopeptide substrates of protein phosphatase-1. Martin BL; Luo S; Kintanar A; Chen M; Graves DJ Arch Biochem Biophys; 1998 Nov; 359(2):179-91. PubMed ID: 9808759 [TBL] [Abstract][Full Text] [Related]
2. Arginine to citrulline replacement in substrates of phosphorylase kinase. Bartleson C; Luo S; Graves DJ; Martin BL Biochim Biophys Acta; 2000 Jul; 1480(1-2):23-8. PubMed ID: 11004553 [TBL] [Abstract][Full Text] [Related]
3. Mutants of phosphorylase a altered in recognition by protein phosphatase-1. Bartleson C; Biorn AC; Graves DJ Biochemistry; 2003 Mar; 42(10):3018-24. PubMed ID: 12627967 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of microbial arginine deiminases by L-canavanine. Li L; Li Z; Chen D; Lu X; Feng X; Wright EC; Solberg NO; Dunaway-Mariano D; Mariano PS; Galkin A; Kulakova L; Herzberg O; Green-Church KB; Zhang L J Am Chem Soc; 2008 Feb; 130(6):1918-31. PubMed ID: 18205354 [TBL] [Abstract][Full Text] [Related]
5. Phosphate group-driven fragmentation of multiply charged phosphopeptide anions. Improved recognition of peptides phosphorylated at serine, threonine, or tyrosine by negative ion electrospray tandem mass spectrometry. Edelson-Averbukh M; Pipkorn R; Lehmann WD Anal Chem; 2006 Feb; 78(4):1249-56. PubMed ID: 16478119 [TBL] [Abstract][Full Text] [Related]
6. Partial activation of muscle phosphorylase by replacement of serine 14 with acidic residues at the site of regulatory phosphorylation. Buchbinder JL; Luong CB; Browner MF; Fletterick RJ Biochemistry; 1997 Jul; 36(26):8039-44. PubMed ID: 9201951 [TBL] [Abstract][Full Text] [Related]
7. Detection of protein phosphatase activities in sodium dodecyl sulfate-polyacrylamide gel using peptide substrates. Kameshita I; Ishida A; Okuno S; Fujisawa H Anal Biochem; 1997 Feb; 245(2):149-53. PubMed ID: 9056202 [TBL] [Abstract][Full Text] [Related]
8. Fluorescent peptide probes for high-throughput measurement of protein phosphatases. Noble JE; Ganju P; Cass AE Anal Chem; 2003 May; 75(9):2042-7. PubMed ID: 12720338 [TBL] [Abstract][Full Text] [Related]
9. Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(II)-dipicolylamine)-based artificial receptors. Ojida A; Mito-oka Y; Sada K; Hamachi I J Am Chem Soc; 2004 Mar; 126(8):2454-63. PubMed ID: 14982454 [TBL] [Abstract][Full Text] [Related]
10. Enhanced binding of RNAP II CTD phosphatase FCP1 to RAP74 following CK2 phosphorylation. Abbott KL; Renfrow MB; Chalmers MJ; Nguyen BD; Marshall AG; Legault P; Omichinski JG Biochemistry; 2005 Mar; 44(8):2732-45. PubMed ID: 15723518 [TBL] [Abstract][Full Text] [Related]
11. Phosphorylated serine and threonine residues promote site-specific fragmentation of singly charged, arginine-containing peptide ions. Gehrig PM; Roschitzki B; Rutishauser D; Reiland S; Schlapbach R Rapid Commun Mass Spectrom; 2009 May; 23(10):1435-45. PubMed ID: 19353557 [TBL] [Abstract][Full Text] [Related]
12. Enzyme-substrate interactions revealed by the crystal structures of the archaeal Sulfolobus PTP-fold phosphatase and its phosphopeptide complexes. Chu HM; Wang AH Proteins; 2007 Mar; 66(4):996-1003. PubMed ID: 17173287 [TBL] [Abstract][Full Text] [Related]
13. N(omega)-phosphoarginine phosphatase (17 kDa) and alkaline phosphatase as protein arginine phosphatases. Kumon A; Kodama H; Kondo M; Yokoi F; Hiraishi H J Biochem; 1996 Apr; 119(4):719-24. PubMed ID: 8743574 [TBL] [Abstract][Full Text] [Related]
14. Low-barrier hydrogen bond between phosphate and the amide group in phosphopeptide. Du JT; Li YM; Wei W; Wu GS; Zhao YF; Kanazawa K; Nemoto T; Nakanishi H J Am Chem Soc; 2005 Nov; 127(47):16350-1. PubMed ID: 16305194 [TBL] [Abstract][Full Text] [Related]
15. Measurement of protein phosphatase activity in biological samples using synthetic phosphopeptides. Nemani R; Wongsurawat N; Armbrecht HJ Second Messengers Phosphoproteins; 1992; 14(1-2):65-76. PubMed ID: 1328621 [TBL] [Abstract][Full Text] [Related]
16. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study. Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187 [TBL] [Abstract][Full Text] [Related]
17. Application of the linear interaction energy method (LIE) to estimate the binding free energy values of Escherichia coli wild-type and mutant arginine repressor C-terminal domain (ArgRc)-l-arginine and ArgRc-l-citrulline protein-ligand complexes. Asi AM; Rahman NA; Merican AF J Mol Graph Model; 2004 Mar; 22(4):249-62. PubMed ID: 15177077 [TBL] [Abstract][Full Text] [Related]
18. Solution NMR structure of the myosin phosphatase inhibitor protein CPI-17 shows phosphorylation-induced conformational changes responsible for activation. Ohki S; Eto M; Kariya E; Hayano T; Hayashi Y; Yazawa M; Brautigan D; Kainosho M J Mol Biol; 2001 Dec; 314(4):839-49. PubMed ID: 11734001 [TBL] [Abstract][Full Text] [Related]
19. Fluoride inhibition of bovine spleen purple acid phosphatase: characterization of a ternary enzyme-phosphate-fluoride complex as a model for the active enzyme-substrate-hydroxide complex. Pinkse MW; Merkx M; Averill BA Biochemistry; 1999 Aug; 38(31):9926-36. PubMed ID: 10433699 [TBL] [Abstract][Full Text] [Related]