These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 9808862)
1. Regulation of new blood vessel growth into ischemic skeletal muscle. Bush RL; Pevec WC; Ndoye A; Cheung AT; Sasse J; Pearson DN J Vasc Surg; 1998 Nov; 28(5):919-28. PubMed ID: 9808862 [TBL] [Abstract][Full Text] [Related]
2. Functional outcome of new blood vessel growth into ischemic skeletal muscle. Lee SL; Pevec WC; Carlsen RC J Vasc Surg; 2001 Dec; 34(6):1096-102. PubMed ID: 11743567 [TBL] [Abstract][Full Text] [Related]
3. New blood vessels can be induced to invade ischemic skeletal muscle. Pevec WC; Ndoye A; Brinsky JL; Wiltse S; Cheung AT J Vasc Surg; 1996 Oct; 24(4):534-41; discussion 541-4. PubMed ID: 8911402 [TBL] [Abstract][Full Text] [Related]
4. Ischaemia-induced expression of bFGF in normal skeletal muscle: a potential paracrine mechanism for mediating angiogenesis in ischaemic skeletal muscle. Walgenbach KJ; Gratas C; Shestak KC; Becker D Nat Med; 1995 May; 1(5):453-9. PubMed ID: 7585094 [TBL] [Abstract][Full Text] [Related]
5. Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Asahara T; Bauters C; Zheng LP; Takeshita S; Bunting S; Ferrara N; Symes JF; Isner JM Circulation; 1995 Nov; 92(9 Suppl):II365-71. PubMed ID: 7586439 [TBL] [Abstract][Full Text] [Related]
6. Therapeutic site selection is important for the successful development of collateral vessels. Nishiyama A; Koyama H; Miyata T; Watanabe T J Vasc Surg; 2015 Jul; 62(1):190-9. PubMed ID: 24630870 [TBL] [Abstract][Full Text] [Related]
7. Controlled delivery of vascular endothelial growth factor promotes neovascularization and maintains limb function in a rabbit model of ischemia. Hopkins SP; Bulgrin JP; Sims RL; Bowman B; Donovan DL; Schmidt SP J Vasc Surg; 1998 May; 27(5):886-94; discussion 895. PubMed ID: 9620141 [TBL] [Abstract][Full Text] [Related]
9. Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: dose-response effect of basic fibroblast growth factor. Baffour R; Berman J; Garb JL; Rhee SW; Kaufman J; Friedmann P J Vasc Surg; 1992 Aug; 16(2):181-91. PubMed ID: 1379646 [TBL] [Abstract][Full Text] [Related]
10. Angiogenic therapy for the chronically ischemic lower limb in a rabbit model. Baffour R; Garb JL; Kaufman J; Berman J; Rhee SW; Norris MA; Friedmann P J Surg Res; 2000 Oct; 93(2):219-29. PubMed ID: 11027464 [TBL] [Abstract][Full Text] [Related]
11. Efficacy of fragmin/protamine microparticles containing fibroblast growth factor-2 (F/P MPs/FGF-2) to induce collateral vessels in a rabbit model of hindlimb ischemia. Horio T; Fujita M; Tanaka Y; Ishihara M; Kishimoto S; Nakamura S; Hase K; Maehara T J Vasc Surg; 2011 Sep; 54(3):791-8. PubMed ID: 21620612 [TBL] [Abstract][Full Text] [Related]
12. Revascularization of an ischemic limb by use of a muscle pedicle flap: a rabbit model. Pevec WC; Hendricks D; Rosenthal MS; Shestak KC; Steed DL; Webster MW J Vasc Surg; 1991 Mar; 13(3):385-90. PubMed ID: 1705586 [TBL] [Abstract][Full Text] [Related]
13. Coadministration of adipose-derived stem cells and control-released basic fibroblast growth factor facilitates angiogenesis in a murine ischemic hind limb model. Horikoshi-Ishihara H; Tobita M; Tajima S; Tanaka R; Oshita T; Tabata Y; Mizuno H J Vasc Surg; 2016 Dec; 64(6):1825-1834.e1. PubMed ID: 26597457 [TBL] [Abstract][Full Text] [Related]
14. Gelatin hydrogel microspheres enable pinpoint delivery of basic fibroblast growth factor for the development of functional collateral vessels. Hosaka A; Koyama H; Kushibiki T; Tabata Y; Nishiyama N; Miyata T; Shigematsu H; Takato T; Nagawa H Circulation; 2004 Nov; 110(21):3322-8. PubMed ID: 15520306 [TBL] [Abstract][Full Text] [Related]
15. Controlled delivery of bFGF remodeled vascular network in muscle flap and increased perfusion capacity via minor pedicle. Yasuda Y; Koyama H; Tabata Y; Fujihara Y; Oba M; Uchinuma E; Takato T J Surg Res; 2008 Jun; 147(1):132-7. PubMed ID: 18262550 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of muscle flap hemodynamics by angiopoietin-1. Gurunluoglu R; Lubiatowski P; Goldman CK; Carnevale K; Siemionow M Ann Plast Surg; 2002 Apr; 48(4):401-9. PubMed ID: 12068223 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous application of basic fibroblast growth factor and hepatocyte growth factor to enhance the blood vessels formation. Marui A; Kanematsu A; Yamahara K; Doi K; Kushibiki T; Yamamoto M; Itoh H; Ikeda T; Tabata Y; Komeda M J Vasc Surg; 2005 Jan; 41(1):82-90. PubMed ID: 15696049 [TBL] [Abstract][Full Text] [Related]
19. Exercise training enhances basic fibroblast growth factor-induced collateral blood flow. Yang HT; Ogilvie RW; Terjung RL Am J Physiol; 1998 Jun; 274(6):H2053-61. PubMed ID: 9841532 [TBL] [Abstract][Full Text] [Related]
20. Adenovirus-mediated ex vivo gene transfer of basic fibroblast growth factor promotes collateral development in a rabbit model of hind limb ischemia. Ohara N; Koyama H; Miyata T; Hamada H; Miyatake SI; Akimoto M; Shigematsu H Gene Ther; 2001 Jun; 8(11):837-45. PubMed ID: 11423931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]