These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9809421)

  • 1. Organelle purification and selective permeabilisation of the plasma membrane: two different approaches to study vacuoles of the filamentous fungus Ashbya gossypii.
    Förster C; Marienfeld S; Wilhelm R; Krämer R
    FEMS Microbiol Lett; 1998 Oct; 167(2):209-14. PubMed ID: 9809421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic compartmentation of vacuolar amino acids in Penicillium cyclopium. Cytosolic adenylates act as a control signal for efflux into the cytosol.
    Roos W; Schulze R; Steighardt J
    J Biol Chem; 1997 Jun; 272(25):15849-55. PubMed ID: 9188483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presence of a vacuolar H+-pyrophosphatase in promastigotes of Leishmania donovani and its localization to a different compartment from the vacuolar H+-ATPase.
    Rodrigues CO; Scott DA; Docampo R
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):759-66. PubMed ID: 10359662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carrier-mediated transport of riboflavin in Ashbya gossypii.
    Förster C; Revuelta JL; Krämer R
    Appl Microbiol Biotechnol; 2001 Jan; 55(1):85-9. PubMed ID: 11234964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The vacuolar membrane of plant cells: a newcomer in the field of biological membranes.
    Barbier-Brygoo H; Renaudin JP; Guern J
    Biochimie; 1986 Mar; 68(3):417-25. PubMed ID: 3017451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of vacuolar arginine uptake and amino acid efflux in Neurospora crassa using cupric ion to permeabilize the plasma membrane.
    Keenan KA; Weiss RL
    Fungal Genet Biol; 1997 Dec; 22(3):177-90. PubMed ID: 9454645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and stability of eisosomes in the filamentous fungus Ashbya gossypii.
    Seger S; Rischatsch R; Philippsen P
    J Cell Sci; 2011 May; 124(Pt 10):1629-34. PubMed ID: 21525038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotic water permeability of plasma and vacuolar membranes in protoplasts I: high osmotic water permeability in radish (Raphanus sativus) root cells as measured by a new method.
    Murai-Hatano M; Kuwagata T
    J Plant Res; 2007 Mar; 120(2):175-89. PubMed ID: 17186120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apical localization of actin patches and vacuolar dynamics in Ashbya gossypii depend on the WASP homolog Wal1p.
    Walther A; Wendland J
    J Cell Sci; 2004 Oct; 117(Pt 21):4947-58. PubMed ID: 15367585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion.
    Ohsumi Y; Kitamoto K; Anraku Y
    J Bacteriol; 1988 Jun; 170(6):2676-82. PubMed ID: 3286617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Live cell fluorescence imaging for early expression and localization of RIB1 and RIB3 genes in Ashbya gossypii.
    Sengupta S; Kaufmann A; T S C
    J Basic Microbiol; 2014 Jan; 54(1):81-7. PubMed ID: 23553441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From function to shape: a novel role of a formin in morphogenesis of the fungus Ashbya gossypii.
    Schmitz HP; Kaufmann A; Köhli M; Laissue PP; Philippsen P
    Mol Biol Cell; 2006 Jan; 17(1):130-45. PubMed ID: 16236798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vacuolar transporter Avt4 is involved in excretion of basic amino acids from the vacuoles of Saccharomyces cerevisiae.
    Sekito T; Chardwiriyapreecha S; Sugimoto N; Ishimoto M; Kawano-Kawada M; Kakinuma Y
    Biosci Biotechnol Biochem; 2014; 78(6):969-75. PubMed ID: 25036121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cellular energization state affects peripheral stalk stability of plant vacuolar H+-ATPase and impairs vacuolar acidification.
    Schnitzer D; Seidel T; Sander T; Golldack D; Dietz KJ
    Plant Cell Physiol; 2011 May; 52(5):946-56. PubMed ID: 21474463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphometrical study of plant vacuolar dynamics in single cells using three-dimensional reconstruction from optical sections.
    Kutsuna N; Hasezawa S
    Microsc Res Tech; 2005 Dec; 68(5):296-306. PubMed ID: 16315234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osmotic water permeability of plasma and vacuolar membranes in protoplasts II: theoretical basis.
    Kuwagata T; Murai-Hatano M
    J Plant Res; 2007 Mar; 120(2):193-208. PubMed ID: 17171531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric pulse induced membrane permeabilization. Spatial orientation and kinetics of solute efflux in freely suspended and dielectrophoretically aligned plant mesophyll protoplasts.
    Mehrle W; Hampp R; Zimmermann U
    Biochim Biophys Acta; 1989 Jan; 978(2):267-75. PubMed ID: 2914141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobilization of Ca2+ stores in individual pancreatic beta-cells permeabilized or not with digitonin or alpha-toxin.
    Tengholm A; Hellman B; Gylfe E
    Cell Calcium; 2000 Jan; 27(1):43-51. PubMed ID: 10726210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2.
    Schulz A; Beyhl D; Marten I; Wormit A; Neuhaus E; Poschet G; Büttner M; Schneider S; Sauer N; Hedrich R
    Plant J; 2011 Oct; 68(1):129-36. PubMed ID: 21668536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and functional characterization of protoplasts and intact vacuoles from grape cells.
    Fontes N; Silva R; Vignault C; Lecourieux F; Gerós H; Delrot S
    BMC Res Notes; 2010 Jan; 3():19. PubMed ID: 20181000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.