These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 9809452)

  • 1. The electric organ discharges of the gymnotiform fishes: II. Eigenmannia.
    Assad C; Rasnow B; Stoddard PK; Bower JM
    J Comp Physiol A; 1998 Oct; 183(4):419-32. PubMed ID: 9809452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric organ discharges of the gymnotiform fishes: III. Brachyhypopomus.
    Stoddard PK; Rasnow B; Assad C
    J Comp Physiol A; 1999 Jun; 184(6):609-30. PubMed ID: 10418155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase and amplitude maps of the electric organ discharge of the weakly electric fish, Apteronotus leptorhynchus.
    Rasnow B; Assad C; Bower JM
    J Comp Physiol A; 1993 May; 172(4):481-91. PubMed ID: 8315610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrosensory and metabolic responses of weakly electric fish to changing water conductivity.
    Wiser SD; Markham MR
    J Exp Biol; 2024 May; 227(10):. PubMed ID: 38712896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An internal current source yields immunity of electrosensory information processing to unusually strong jamming in electric fish.
    Heiligenberg W; Kawasaki M
    J Comp Physiol A; 1992 Oct; 171(3):309-16. PubMed ID: 1447722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrosensory interference in naturally occurring aggregates of a species of weakly electric fish, Eigenmannia virescens.
    Tan EW; Nizar JM; Carrera-G E; Fortune ES
    Behav Brain Res; 2005 Oct; 164(1):83-92. PubMed ID: 16099058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric organ discharges and electric images during electrolocation.
    Assad C; Rasnow B; Stoddard PK
    J Exp Biol; 1999 May; 202(Pt 10):1185-93. PubMed ID: 10210660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-locking behavior in a high-frequency gymnotiform weakly electric fish, Adontosternarchus.
    Kawasaki M; Leonard J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Feb; 203(2):151-162. PubMed ID: 28190119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cutaneous electrical oscillation in a weakly electric fish, Gymnarchus niloticus.
    Kawasaki M
    J Comp Physiol A; 2001 Oct; 187(8):597-604. PubMed ID: 11763958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time domain processing of electric organ discharge waveforms by pulse-type electric fish.
    Hopkins CD; Westby GW
    Brain Behav Evol; 1986; 29(1-2):77-104. PubMed ID: 3594199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetic constraints on electric signalling in wave-type weakly electric fishes.
    Reardon EE; Parisi A; Krahe R; Chapman LJ
    J Exp Biol; 2011 Dec; 214(Pt 24):4141-50. PubMed ID: 22116756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of multiple stimulus features forces a trade-off in the pyramidal cell network of a gymnotiform electric fish's electrosensory lateral line lobe.
    Stoddard PK
    J Comp Physiol A; 1998 Jan; 182(1):103-13. PubMed ID: 9447717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory cues for the gradual frequency fall responses of the gymnotiform electric fish, Rhamphichthys rostratus.
    Kawasaki M; Prather J; Guo YX
    J Comp Physiol A; 1996 Apr; 178(4):453-62. PubMed ID: 8847661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the electrosensory system in postural control of the weakly electric fish Eigenmannia virescens.
    Feng AS
    J Neurobiol; 1977 Sep; 8(5):429-37. PubMed ID: 903765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sex recognition and neuronal coding of electric organ discharge waveform in the pulse-type weakly electric fish, Hypopomus occidentalis.
    Shumway CA; Zelick RD
    J Comp Physiol A; 1988 Aug; 163(4):465-78. PubMed ID: 3184009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the jamming avoidance response and its morphological correlates in the gymnotiform electric fish, Eigenmannia.
    Hagedorn M; Vischer HA; Heiligenberg W
    J Neurobiol; 1992 Dec; 23(10):1446-66. PubMed ID: 1487744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor control of the jamming avoidance response of Apteronotus leptorhynchus: evolutionary changes of a behavior and its neuronal substrates.
    Heiligenberg W; Metzner W; Wong CJ; Keller CH
    J Comp Physiol A; 1996 Nov; 179(5):653-74. PubMed ID: 8888577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontogeny and evolution of electric organs in gymnotiform fish.
    Kirschbaum F; Schwassmann HO
    J Physiol Paris; 2008; 102(4-6):347-56. PubMed ID: 18984049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pre-receptor profile of sensory images and primary afferent neuronal representation in the mormyrid electrosensory system.
    Gómez L; Budelli R; Grant K; Caputi AA
    J Exp Biol; 2004 Jun; 207(Pt 14):2443-53. PubMed ID: 15184516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Species-specific diversity of a fixed motor pattern: the electric organ discharge of Gymnotus.
    Rodríguez-Cattaneo A; Pereira AC; Aguilera PA; Crampton WG; Caputi AA
    PLoS One; 2008 May; 3(5):e2038. PubMed ID: 18461122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.