These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 9809453)
1. Indirect synaptic inputs from filiform hair sensory neurons contribute to the receptive fields of giant interneurons in the first-instar cockroach. Hill ES; Blagburn JM J Comp Physiol A; 1998 Oct; 183(4):467-76. PubMed ID: 9809453 [TBL] [Abstract][Full Text] [Related]
2. Synaptic specificity in the first instar cockroach: patterns of monosynaptic input from filiform hair afferents to giant interneurons. Blagburn JM J Comp Physiol A; 1989 Nov; 166(1):133-42. PubMed ID: 2600884 [TBL] [Abstract][Full Text] [Related]
3. Correlation of filiform hair position with sensory afferent morphology and synaptic connections in the second instar cockroach. Thompson KS; Blagburn JM; Gibbon CR; Bacon JP J Comp Neurol; 1992 Jun; 320(2):213-27. PubMed ID: 1619050 [TBL] [Abstract][Full Text] [Related]
4. Positional information determines the anatomy and synaptic specificity of cockroach filiform hair afferents using independent mechanisms. Blagburn JM; Blanco RE; Thompson KS; Bacon JP J Comp Physiol A; 1991 Nov; 169(5):607-14. PubMed ID: 1724462 [TBL] [Abstract][Full Text] [Related]
5. Presynaptic effects of biogenic amines modulating synaptic transmission between identified sensory neurons and giant interneurons in the first instar cockroach. Hill ES; Blagburn JM J Comp Physiol A; 2001 Oct; 187(8):633-45. PubMed ID: 11763961 [TBL] [Abstract][Full Text] [Related]
6. Specificity of filiform hair afferent synapses onto giant interneurons in Periplaneta americana: anatomy is not a sufficient determinant. Blagburn JM; Thompson KS J Comp Neurol; 1990 Dec; 302(2):255-71. PubMed ID: 2289973 [TBL] [Abstract][Full Text] [Related]
8. Specificity of synapse formation in the cockroach. Blagburn JM P R Health Sci J; 1988 Aug; 7(2):171-6. PubMed ID: 2847212 [TBL] [Abstract][Full Text] [Related]
9. Neural circuitry underlying linear representation of wind information in a nonspiking local interneuron of the cockroach. Okuma J; Kondoh Y J Comp Physiol A; 1996 Dec; 179(6):725-40. PubMed ID: 8956494 [TBL] [Abstract][Full Text] [Related]
10. Integrative mechanisms controlling directional sensitivity of an identified sensory interneuron. Jacobs GA; Miller JP; Murphey RK J Neurosci; 1986 Aug; 6(8):2298-311. PubMed ID: 3746411 [TBL] [Abstract][Full Text] [Related]
11. Localization of the enhanced input to cockroach giant interneurons after partial deafferentation. Volman SF J Neurobiol; 1989 Dec; 20(8):762-83. PubMed ID: 2584965 [TBL] [Abstract][Full Text] [Related]
12. Reliability and effectiveness of transmission from exteroceptive sensory neurons to spiking local interneurons in the locust. Burrows M J Neurosci; 1992 Apr; 12(4):1477-89. PubMed ID: 1313495 [TBL] [Abstract][Full Text] [Related]
13. Parallel motor pathways from thoracic interneurons of the ventral giant interneuron system of the cockroach, Periplaneta americana. Ritzmann RE; Pollack AJ J Neurobiol; 1990 Dec; 21(8):1219-35. PubMed ID: 2273401 [TBL] [Abstract][Full Text] [Related]
14. Synaptic inputs to stellate cells in the ventral cochlear nucleus. Ferragamo MJ; Golding NL; Oertel D J Neurophysiol; 1998 Jan; 79(1):51-63. PubMed ID: 9425176 [TBL] [Abstract][Full Text] [Related]
15. Specificity of identified central synapses in the embryonic cockroach: appropriate connections form before the onset of spontaneous afferent activity. Blagburn JM; Sosa MA; Blanco RE J Comp Neurol; 1996 Sep; 373(4):511-28. PubMed ID: 8889942 [TBL] [Abstract][Full Text] [Related]
16. Connectivity pattern of the cercal-to-giant interneuron system of the American cockroach. Daley DL; Camhi JM J Neurophysiol; 1988 Oct; 60(4):1350-68. PubMed ID: 3193161 [TBL] [Abstract][Full Text] [Related]
17. Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons. Burrows M; Newland PL J Comp Neurol; 1993 Mar; 329(3):412-26. PubMed ID: 8459052 [TBL] [Abstract][Full Text] [Related]
18. Presynaptic inhibition of identified wind-sensitive afferents in the cercal system of the locust. Boyan GS J Neurosci; 1988 Aug; 8(8):2748-57. PubMed ID: 3411352 [TBL] [Abstract][Full Text] [Related]
19. Development of synapses between identified sensory neurones and giant interneurones in the cockroach Periplaneta americana. Blagburn JM; Beadle DJ; Sattelle DB J Embryol Exp Morphol; 1985 Apr; 86():227-46. PubMed ID: 4031743 [TBL] [Abstract][Full Text] [Related]
20. Primary afferents evoke excitatory amino acid receptor-mediated EPSPs that are modulated by presynaptic GABAB receptors in lamprey. Christenson J; Grillner S J Neurophysiol; 1991 Dec; 66(6):2141-9. PubMed ID: 1687474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]