These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 9809639)

  • 1. Extracorporeal shock waves act by shock wave-gas bubble interaction.
    Delius M; Ueberle F; Eisenmenger W
    Ultrasound Med Biol; 1998 Sep; 24(7):1055-9. PubMed ID: 9809639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimal static excess pressure minimises the effect of extracorporeal shock waves on cells and reduces it on gallstones.
    Delius M
    Ultrasound Med Biol; 1997; 23(4):611-7. PubMed ID: 9232770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic energy determines haemoglobin release from erythrocytes by extracorporeal shock waves in vitro.
    Delius M; Ueberle F; Gambihler S
    Ultrasound Med Biol; 1995; 21(5):707-10. PubMed ID: 8525561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments.
    Zhong P; Zhou Y
    J Acoust Soc Am; 2001 Dec; 110(6):3283-91. PubMed ID: 11785829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation.
    Canseco G; de Icaza-Herrera M; Fernández F; Loske AM
    Ultrasonics; 2011 Oct; 51(7):803-10. PubMed ID: 21459398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method.
    Kobayashi K; Kodama T; Takahira H
    Phys Med Biol; 2011 Oct; 56(19):6421-40. PubMed ID: 21918295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of dissolved and free gases on iodine release and cell killing by shock waves in vitro.
    Gambihler S; Delius M
    Ultrasound Med Biol; 1992; 18(6-7):617-23. PubMed ID: 1413273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical haemolysis in shock wave lithotripsy (SWL): II. In vitro cell lysis due to shear.
    Lokhandwalla M; McAteer JA; Williams JC; Sturtevant B
    Phys Med Biol; 2001 Apr; 46(4):1245-64. PubMed ID: 11324963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell damage by lithotripter shock waves at high pressure to preclude cavitation.
    Williams JC; Woodward JF; Stonehill MA; Evan AP; McAteer JA
    Ultrasound Med Biol; 1999 Nov; 25(9):1445-9. PubMed ID: 10626633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of extracorporeal shock wave lithotripsy on pacemaker function.
    Langberg J; Abber J; Thuroff JW; Griffin JC
    Pacing Clin Electrophysiol; 1987 Sep; 10(5):1142-6. PubMed ID: 2444938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biological effects of interacting shock waves. A modeling study of the effects of interacting shock waves using erythrocyte hemolysis].
    Benes J; Stuka C; Fortová H; Chmel J; Sunka P; Klener P
    Sb Lek; 1997; 98(4):277-82. PubMed ID: 9648603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does rate matter? The results of a randomized controlled trial of 60 versus 120 shocks per minute for shock wave lithotripsy of renal calculi.
    Davenport K; Minervini A; Keoghane S; Parkin J; Keeley FX; Timoney AG
    J Urol; 2006 Nov; 176(5):2055-8; discussion 2058. PubMed ID: 17070254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrast-agent gas bodies enhance hemolysis induced by lithotripter shock waves and high-intensity focused ultrasound in whole blood.
    Miller DL; Thomas RM
    Ultrasound Med Biol; 1996; 22(8):1089-95. PubMed ID: 9004433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracorporeal shock waves stimulate frog sciatic nerves indirectly via a cavitation-mediated mechanism.
    Schelling G; Delius M; Gschwender M; Grafe P; Gambihler S
    Biophys J; 1994 Jan; 66(1):133-40. PubMed ID: 8130332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithotripter shock wave interaction with a bubble near various biomaterials.
    Ohl SW; Klaseboer E; Szeri AJ; Khoo BC
    Phys Med Biol; 2016 Oct; 61(19):7031-7053. PubMed ID: 27649337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal frequency of shock wave lithotripsy in urolithiasis treatment: a systematic review and meta-analysis of randomized controlled trials.
    Li K; Lin T; Zhang C; Fan X; Xu K; Bi L; Han J; Huang H; Liu H; Dong W; Duan Y; Yu M; Huang J
    J Urol; 2013 Oct; 190(4):1260-7. PubMed ID: 23538240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shock wave-inertial microbubble interaction: a theoretical study based on the Gilmore formulation for bubble dynamics.
    Zhu S; Zhong P
    J Acoust Soc Am; 1999 Nov; 106(5):3024-33. PubMed ID: 10573912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined short and long-delay tandem shock waves to improve shock wave lithotripsy according to the Gilmore-Akulichev theory.
    de Icaza-Herrera M; Fernández F; Loske AM
    Ultrasonics; 2015 Apr; 58():53-9. PubMed ID: 25553714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter.
    Church CC
    J Acoust Soc Am; 1989 Jul; 86(1):215-27. PubMed ID: 2754108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field.
    Arora M; Junge L; Ohl CD
    Ultrasound Med Biol; 2005 Jun; 31(6):827-39. PubMed ID: 15936498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.