BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 9809986)

  • 1. Mechanism of inhibition of a tumor lipid-mobilizing factor by eicosapentaenoic acid.
    Price SA; Tisdale MJ
    Cancer Res; 1998 Nov; 58(21):4827-31. PubMed ID: 9809986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of adipocyte G-protein expression in cancer cachexia by a lipid-mobilizing factor (LMF).
    Islam-Ali B; Khan S; Price SA; Tisdale MJ
    Br J Cancer; 2001 Sep; 85(5):758-63. PubMed ID: 11531264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of lipid mobilization associated with cancer cachexia: interaction between the polyunsaturated fatty acid, eicosapentaenoic acid, and inhibitory guanine nucleotide-regulatory protein.
    Tisdale MJ
    Prostaglandins Leukot Essent Fatty Acids; 1993 Jan; 48(1):105-9. PubMed ID: 8380931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of eicosapentaenoic acid (EPA) on expression of a lipid mobilizing factor in adipose tissue in cancer cachexia.
    Russell ST; Tisdale MJ
    Prostaglandins Leukot Essent Fatty Acids; 2005 Jun; 72(6):409-14. PubMed ID: 15899583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological evaluation of a lipid-mobilizing factor isolated from the urine of cancer patients.
    Hirai K; Hussey HJ; Barber MD; Price SA; Tisdale MJ
    Cancer Res; 1998 Jun; 58(11):2359-65. PubMed ID: 9622075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of tumour-induced lipolysis in vitro and cachexia and tumour growth in vivo by eicosapentaenoic acid.
    Tisdale MJ; Beck SA
    Biochem Pharmacol; 1991 Jan; 41(1):103-7. PubMed ID: 1846070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anticachectic and antitumor effect of eicosapentaenoic acid and its effect on protein turnover.
    Beck SA; Smith KL; Tisdale MJ
    Cancer Res; 1991 Nov; 51(22):6089-93. PubMed ID: 1657378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Gi-protein-mediated mitogenesis following chronic ethanol exposure in a rat model of experimental hepatocellular carcinoma.
    McKillop IH; Vyas N; Schmidt CM; Cahill PA; Sitzmann JV
    Hepatology; 1999 Feb; 29(2):412-20. PubMed ID: 9918917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Docosahexaenoic acid-enriched phospholipids and eicosapentaenoic acid-enriched phospholipids inhibit tumor necrosis factor-alpha-induced lipolysis in 3T3-L1 adipocytes by activating sirtuin 1 pathways.
    Yang YH; Hao YM; Liu XF; Gao X; Wang BZ; Takahashi K; Du L
    Food Funct; 2021 Jun; 12(11):4783-4796. PubMed ID: 34100500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supersensitivity to mu-opioid receptor-mediated inhibition of the adenylyl cyclase pathway involves pertussis toxin-resistant Galpha protein subunits.
    Mostany R; Díaz A; Valdizán EM; Rodríguez-Muñoz M; Garzón J; Hurlé MA
    Neuropharmacology; 2008 May; 54(6):989-97. PubMed ID: 18384820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of low-dose docosahexaenoic acid and eicosapentaenoic acid on the regulation of mitogenic signaling pathways in mesangial cells.
    Yusufi AN; Cheng J; Thompson MA; Walker HJ; Gray CE; Warner GM; Grande JP
    J Lab Clin Med; 2003 May; 141(5):318-29. PubMed ID: 12761475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism for the antitumor and anticachectic effects of n-3 fatty acids.
    Sauer LA; Dauchy RT; Blask DE
    Cancer Res; 2000 Sep; 60(18):5289-95. PubMed ID: 11016660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of adenylyl cyclase activity in brain membrane fractions by arachidonic acid and related unsaturated fatty acids.
    Nakamura J; Okamura N; Usuki S; Bannai S
    Arch Biochem Biophys; 2001 May; 389(1):68-76. PubMed ID: 11370673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In contrast with docosahexaenoic acid, eicosapentaenoic acid and hypolipidaemic derivatives decrease hepatic synthesis and secretion of triacylglycerol by decreased diacylglycerol acyltransferase activity and stimulation of fatty acid oxidation.
    Berge RK; Madsen L; Vaagenes H; Tronstad KJ; Göttlicher M; Rustan AC
    Biochem J; 1999 Oct; 343 Pt 1(Pt 1):191-7. PubMed ID: 10493929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eicosapentaenoic acid is more effective than docosahexaenoic acid in inhibiting proinflammatory mediator production and transcription from LPS-induced human asthmatic alveolar macrophage cells.
    Mickleborough TD; Tecklenburg SL; Montgomery GS; Lindley MR
    Clin Nutr; 2009 Feb; 28(1):71-7. PubMed ID: 19054597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eicosapentaenoic acid and docosahexaenoic acid effects on tumour mitochondrial metabolism, acyl CoA metabolism and cell proliferation.
    Colquhoun A; Ramos KL; Schumacher RI
    Cell Biochem Funct; 2001 Jun; 19(2):97-105. PubMed ID: 11335934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of a tumour-produced lipid-mobilizing factor on protein synthesis and degradation.
    Islam-Ali BS; Tisdale MJ
    Br J Cancer; 2001 Jun; 84(12):1648-55. PubMed ID: 11401319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angiotensin II enhances the expression of Gialpha in A10 cells (smooth muscle): relationship with adenylyl cyclase activity.
    Palaparti A; Ge C; Anand-Srivastava MB
    Arch Biochem Biophys; 1999 May; 365(1):113-22. PubMed ID: 10222045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eicosapentaenoic acid and docosahexaenoic acid modulate mitogen-activated protein kinase activity in endothelium.
    Xue H; Wan M; Song D; Li Y; Li J
    Vascul Pharmacol; 2006 Jun; 44(6):434-9. PubMed ID: 16616699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of lipolysis and muscle protein degradation by EPA in cancer cachexia.
    Tisdale MJ
    Nutrition; 1996 Jan; 12(1 Suppl):S31-3. PubMed ID: 8850217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.