BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9811476)

  • 1. Binary oscillatory cross-flow electrophoresis: theory and experiments.
    Molloy RF; Leighton DT
    J Pharm Sci; 1998 Nov; 87(11):1270-81. PubMed ID: 9811476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retention behavior of proteins in size-exclusion electrochromatography with a low-voltage electric field perpendicular to the liquid phase streamline.
    Tan G; Shi Q; Sun Y
    Electrophoresis; 2005 Aug; 26(16):3084-93. PubMed ID: 16041710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrokinetic transport in nanochannels. 1. Theory.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6772-81. PubMed ID: 16255573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein adsorption-dependent electro-kinetic pore flow: modeling of ion-exchange electrochromatography with an oscillatory transverse electric field.
    Yuan W; Zhao YP; Zhang Q; Sun Y
    Electrophoresis; 2010 Mar; 31(5):944-51. PubMed ID: 20191556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic electrophoresis of charged colloids in an oscillating electric field.
    Shih C; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062317. PubMed ID: 25019786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free-flow zone electrophoresis: a novel approach and scale-up for preparative protein separation.
    Poggel M; Melin T
    Electrophoresis; 2001 Apr; 22(6):1008-15. PubMed ID: 11358121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous microfluidic DNA and protein trapping and concentration by balancing transverse electrokinetic forces.
    Morales MC; Lin H; Zahn JD
    Lab Chip; 2012 Jan; 12(1):99-108. PubMed ID: 22045330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High flow-resolution for mobility estimation in 2D-ENMR of proteins using maximum entropy method (MEM-ENMR).
    Thakur SB; He Q
    J Magn Reson; 2006 Nov; 183(1):32-40. PubMed ID: 16901738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein diffusion through charged nanopores with different radii at low ionic strength.
    Stroeve P; Rahman M; Naidu LD; Chu G; Mahmoudi M; Ramirez P; Mafe S
    Phys Chem Chem Phys; 2014 Oct; 16(39):21570-6. PubMed ID: 25189648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of protein separation by continuous-flow electrophoresis.
    Clifton MJ
    Electrophoresis; 1993 Dec; 14(12):1284-91. PubMed ID: 8137791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joule heating induced stream broadening in free-flow zone electrophoresis.
    Dutta D
    Electrophoresis; 2018 Mar; 39(5-6):760-769. PubMed ID: 29115696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study on the optimization of general conditions for a free-flow electrophoresis device with a thermoelectric cooler.
    Yan J; Yang CZ; Zhang Q; Liu XP; Kong FZ; Cao CX; Jin XQ
    J Sep Sci; 2014 Dec; 37(23):3555-63. PubMed ID: 25216109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillatory transverse electric field enhances mass transfer and protein capacity in ion-exchange electrochromatography.
    Tan GM; Shi QH; Sun Y
    J Chromatogr A; 2005 Dec; 1098(1-2):131-7. PubMed ID: 16314169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mid-scale free-flow electrophoresis with gravity-induced uniform flow of background buffer in chamber for the separation of cells and proteins.
    Dong YC; Shao J; Yin XY; Fan LY; Cao CX
    J Sep Sci; 2011 Jul; 34(14):1683-91. PubMed ID: 21695687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractionation of macromolecules in an alternating transverse electric field: simulation of the method.
    Stevens FJ
    J Biochem Biophys Methods; 1990; 20(4):275-92. PubMed ID: 2365947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in the measurement of protein mobility using laser Doppler electrophoresis - the diffusion barrier technique.
    Corbett JC; Connah MT; Mattison K
    Electrophoresis; 2011 Jul; 32(14):1787-94. PubMed ID: 21769888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of obstacle conductivity and electric field on effective mobility and dispersion in electrophoretic transport: a volume averaging approach.
    Locke BR
    Electrophoresis; 2002 Aug; 23(16):2745-54. PubMed ID: 12210179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-controlled separation of proteins by electromobility focusing in a dialysis hollow fiber.
    Wang Q; Lin SL; Warnick KF; Tolley HD; Lee ML
    J Chromatogr A; 2003 Jan; 985(1-2):455-62. PubMed ID: 12580514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational study of velocity profile obtained in microfluidic channel bearing a fluidic transistor: toward highly resolved electrophoretic separation.
    Charhrouchni I; Pallandre A; Le Potier I; Deslouis C; Haghiri-Gosnet AM
    Electrophoresis; 2013 Mar; 34(5):725-35. PubMed ID: 23254905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method-of-moments formulation for describing hydrodynamic dispersion of analyte streams in free-flow zone electrophoresis.
    Dutta D
    J Chromatogr A; 2014 May; 1340():134-8. PubMed ID: 24671038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.