These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9811542)

  • 1. Higher-order structure and thermal instability of bovine mitochondrial tRNASerUGA investigated by proton NMR spectroscopy.
    Hayashi I; Kawai G; Watanabe K
    J Mol Biol; 1998 Nov; 284(1):57-69. PubMed ID: 9811542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tertiary structures of mitochondrial tRNAs having characteristic secondary structures.
    Watanabe Y; Kawai G; Yokogawa T; Hayashi I; Hayashi N; Nishikawa K; Ueda T; Watanabe K
    Nucleic Acids Symp Ser; 1993; (29):209-10. PubMed ID: 8247771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the angle between the acceptor and anticodon stems of a truncated mitochondrial tRNA.
    Frazer-Abel AA; Hagerman PJ
    J Mol Biol; 1999 Jan; 285(2):581-93. PubMed ID: 9878431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal ion stabilization of the U-turn of the A37 N6-dimethylallyl-modified anticodon stem-loop of Escherichia coli tRNAPhe.
    Cabello-Villegas J; Tworowska I; Nikonowicz EP
    Biochemistry; 2004 Jan; 43(1):55-66. PubMed ID: 14705931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation of the acceptor-anticodon interstem angles among mitochondrial and non-mitochondrial tRNAs.
    Frazer-Abel AA; Hagerman PJ
    J Mol Biol; 2004 Oct; 343(2):313-25. PubMed ID: 15451663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational transitions of an unmodified tRNA: implications for RNA folding.
    Maglott EJ; Deo SS; Przykorska A; Glick GD
    Biochemistry; 1998 Nov; 37(46):16349-59. PubMed ID: 9819227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some properties of bovine mitochondrial serine tRNA gene transcript synthesized with T7 RNA polymerase.
    Ueda T; Watanabe K
    Nucleic Acids Symp Ser; 1989; (21):113-4. PubMed ID: 2608455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear control of cloverleaf structure of human mitochondrial tRNA(Lys).
    Helm M; Attardi G
    J Mol Biol; 2004 Mar; 337(3):545-60. PubMed ID: 15019776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The angle between the anticodon and aminoacyl acceptor stems of yeast tRNA(Phe) is strongly modulated by magnesium ions.
    Friederich MW; Hagerman PJ
    Biochemistry; 1997 May; 36(20):6090-9. PubMed ID: 9166779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of mitochondrial tRNA.
    Yokogawa T; Watanabe Y; Yotsumoto Y; Kumazawa Y; Ueda T; Hirao I; Miura K; Watanabe K
    Nucleic Acids Symp Ser; 1991; (25):175-6. PubMed ID: 1726807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translation ability of mitochondrial tRNAsSer with unusual secondary structures in an in vitro translation system of bovine mitochondria.
    Hanada T; Suzuki T; Yokogawa T; Takemoto-Hori C; Sprinzl M; Watanabe K
    Genes Cells; 2001 Dec; 6(12):1019-30. PubMed ID: 11737263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe).
    Cabello-Villegas J; Winkler ME; Nikonowicz EP
    J Mol Biol; 2002 Jun; 319(5):1015-34. PubMed ID: 12079344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural effects of hypermodified nucleosides in the Escherichia coli and human tRNALys anticodon loop: the effect of nucleosides s2U, mcm5U, mcm5s2U, mnm5s2U, t6A, and ms2t6A.
    Durant PC; Bajji AC; Sundaram M; Kumar RK; Davis DR
    Biochemistry; 2005 Jun; 44(22):8078-89. PubMed ID: 15924427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Base pairing within the psi32,psi39-modified anticodon arm of Escherichia coli tRNA(Phe).
    Tworowska I; Nikonowicz EP
    J Am Chem Soc; 2006 Dec; 128(49):15570-1. PubMed ID: 17147349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution structure and thermodynamics of a divalent metal ion binding site in an RNA pseudoknot.
    Gonzalez RL; Tinoco I
    J Mol Biol; 1999 Jun; 289(5):1267-82. PubMed ID: 10373367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity and mechanism of the cleavages induced in yeast tRNAPhe by magnesium ions.
    Marciniec T; Ciesiołka J; Wrzesiński J; Wiewiórowski M; Krzyzosiak WJ
    Acta Biochim Pol; 1989; 36(3-4):183-94. PubMed ID: 2485995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A counterintuitive Mg2+-dependent and modification-assisted functional folding of mitochondrial tRNAs.
    Jones CI; Spencer AC; Hsu JL; Spremulli LL; Martinis SA; DeRider M; Agris PF
    J Mol Biol; 2006 Sep; 362(4):771-86. PubMed ID: 16949614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. tRNA leucine identity and recognition sets.
    Tocchini-Valentini G; Saks ME; Abelson J
    J Mol Biol; 2000 May; 298(5):779-93. PubMed ID: 10801348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of 5-methylcytidine in the anticodon arm of yeast tRNA(Phe): site-specific Mg2+ binding and coupled conformational transition in DNA analogs.
    Dao V; Guenther RH; Agris PF
    Biochemistry; 1992 Nov; 31(45):11012-9. PubMed ID: 1445839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bovine mitochondrial tRNAPhe, tRNASer (AGY) and tRNASer (UCN): preparation using a new detection method and their properties in aminoacylation.
    Kumazawa Y; Yokogawa T; Miura K; Watanabe K
    Nucleic Acids Symp Ser; 1988; (19):97-100. PubMed ID: 3226927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.