These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 9811573)

  • 1. XBF-1, a winged helix transcription factor with dual activity, has a role in positioning neurogenesis in Xenopus competent ectoderm.
    Bourguignon C; Li J; Papalopulu N
    Development; 1998 Dec; 125(24):4889-900. PubMed ID: 9811573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. XBF-2 is a transcriptional repressor that converts ectoderm into neural tissue.
    Mariani FV; Harland RM
    Development; 1998 Dec; 125(24):5019-31. PubMed ID: 9811586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct effects of XBF-1 in regulating the cell cycle inhibitor p27(XIC1) and imparting a neural fate.
    Hardcastle Z; Papalopulu N
    Development; 2000 Mar; 127(6):1303-14. PubMed ID: 10683182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. XCoe2, a transcription factor of the Col/Olf-1/EBF family involved in the specification of primary neurons in Xenopus.
    Dubois L; Bally-Cuif L; Crozatier M; Moreau J; Paquereau L; Vincent A
    Curr Biol; 1998 Feb; 8(4):199-209. PubMed ID: 9501982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional association of retinoic acid and hedgehog signaling in Xenopus primary neurogenesis.
    Franco PG; Paganelli AR; López SL; Carrasco AE
    Development; 1999 Oct; 126(19):4257-65. PubMed ID: 10477294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The homeobox gene, Xanf-1, can control both neural differentiation and patterning in the presumptive anterior neurectoderm of the Xenopus laevis embryo.
    Ermakova GV; Alexandrova EM; Kazanskaya OV; Vasiliev OL; Smith MW; Zaraisky AG
    Development; 1999 Oct; 126(20):4513-23. PubMed ID: 10498686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The homeodomain-containing gene Xdbx inhibits neuronal differentiation in the developing embryo.
    Gershon AA; Rudnick J; Kalam L; Zimmerman K
    Development; 2000 Jul; 127(13):2945-54. PubMed ID: 10851138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xrx1 controls proliferation and neurogenesis in Xenopus anterior neural plate.
    Andreazzoli M; Gestri G; Cremisi F; Casarosa S; Dawid IB; Barsacchi G
    Development; 2003 Nov; 130(21):5143-54. PubMed ID: 12975341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. XATH-1, a vertebrate homolog of Drosophila atonal, induces a neuronal differentiation within ectodermal progenitors.
    Kim P; Helms AW; Johnson JE; Zimmerman K
    Dev Biol; 1997 Jul; 187(1):1-12. PubMed ID: 9224669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain.
    Sullivan SA; Akers L; Moody SA
    Dev Biol; 2001 Apr; 232(2):439-57. PubMed ID: 11401404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal differentiation and patterning in Xenopus: the role of cdk5 and a novel activator xp35.2.
    Philpott A; Tsai L; Kirschner MW
    Dev Biol; 1999 Mar; 207(1):119-32. PubMed ID: 10049569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor.
    Brugmann SA; Pandur PD; Kenyon KL; Pignoni F; Moody SA
    Development; 2004 Dec; 131(23):5871-81. PubMed ID: 15525662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An essential role of Xenopus Foxi1a for ventral specification of the cephalic ectoderm during gastrulation.
    Matsuo-Takasaki M; Matsumura M; Sasai Y
    Development; 2005 Sep; 132(17):3885-94. PubMed ID: 16079156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mxi1 is essential for neurogenesis in Xenopus and acts by bridging the pan-neural and proneural genes.
    Klisch TJ; Souopgui J; Juergens K; Rust B; Pieler T; Henningfeld KA
    Dev Biol; 2006 Apr; 292(2):470-85. PubMed ID: 16457797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of neurogenin, a vertebrate neuronal determination gene.
    Ma Q; Kintner C; Anderson DJ
    Cell; 1996 Oct; 87(1):43-52. PubMed ID: 8858147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xebf3 is a regulator of neuronal differentiation during primary neurogenesis in Xenopus.
    Pozzoli O; Bosetti A; Croci L; Consalez GG; Vetter ML
    Dev Biol; 2001 May; 233(2):495-512. PubMed ID: 11336510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complementary expression of AP-2 and AP-2rep in ectodermal derivatives of Xenopus embryos.
    Gotoh M; Izutsu Y; Maéno M
    Dev Genes Evol; 2003 Jul; 213(7):363-7. PubMed ID: 12756566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of neurogenesis by interactions between HEN1 and neuronal LMO proteins.
    Bao J; Talmage DA; Role LW; Gautier J
    Development; 2000 Jan; 127(2):425-35. PubMed ID: 10603358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xenopus X-box binding protein 1, a leucine zipper transcription factor, is involved in the BMP signaling pathway.
    Zhao H; Cao Y; Grunz H
    Dev Biol; 2003 May; 257(2):278-91. PubMed ID: 12729558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic differences between the superficial and deep layers of the Xenopus ectoderm control primary neuronal differentiation.
    Chalmers AD; Welchman D; Papalopulu N
    Dev Cell; 2002 Feb; 2(2):171-82. PubMed ID: 11832243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.