These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 9811609)

  • 1. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells.
    Waterman-Storer CM; Desai A; Bulinski JC; Salmon ED
    Curr Biol; 1998 Nov; 8(22):1227-30. PubMed ID: 9811609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent speckle microscopy of microtubules: how low can you go?
    Waterman-Storer CM; Salmon ED
    FASEB J; 1999 Dec; 13 Suppl 2():S225-30. PubMed ID: 10619132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent speckle microscopy (FSM) of microtubules and actin in living cells.
    Waterman-Storer C
    Curr Protoc Cell Biol; 2002 Feb; Chapter 4():Unit 4.10. PubMed ID: 18228403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal analysis of total internal reflection fluorescent speckle microscopy (TIR-FSM) and wide-field epi-fluorescence FSM of the actin cytoskeleton and focal adhesions in living cells.
    Adams MC; Matov A; Yarar D; Gupton SL; Danuser G; Waterman-Storer CM
    J Microsc; 2004 Nov; 216(Pt 2):138-52. PubMed ID: 15516225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How microtubules get fluorescent speckles.
    Waterman-Storer CM; Salmon ED
    Biophys J; 1998 Oct; 75(4):2059-69. PubMed ID: 9746548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery, visualization, and analysis of actin and tubulin polymer flow in live cells: a fluorescent speckle microscopy study.
    Vallotton P; Ponti A; Waterman-Storer CM; Salmon ED; Danuser G
    Biophys J; 2003 Aug; 85(2):1289-306. PubMed ID: 12885672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-wavelength fluorescent speckle microscopy reveals coupling of microtubule and actin movements in migrating cells.
    Salmon WC; Adams MC; Waterman-Storer CM
    J Cell Biol; 2002 Jul; 158(1):31-7. PubMed ID: 12105180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent speckle microscopy.
    Cameron LA; Houghtaling BR; Yang G
    Cold Spring Harb Protoc; 2011 May; 2011(5):pdb.top106. PubMed ID: 21536774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative fluorescent speckle microscopy: where it came from and where it is going.
    Danuser G; Waterman-Storer CM
    J Microsc; 2003 Sep; 211(Pt 3):191-207. PubMed ID: 12950468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative fluorescent speckle microscopy (QFSM) to measure actin dynamics.
    Mendoza MC; Besson S; Danuser G
    Curr Protoc Cytom; 2012 Oct; Chapter 2():Unit2.18. PubMed ID: 23042526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-speed multispectral spinning-disk confocal microscope system for fluorescent speckle microscopy of living cells.
    Adams MC; Salmon WC; Gupton SL; Cohan CS; Wittmann T; Prigozhina N; Waterman-Storer CM
    Methods; 2003 Jan; 29(1):29-41. PubMed ID: 12543069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent speckle microscopy in cultured cells.
    Barisic M; Pereira AJ; Maiato H
    Methods Enzymol; 2012; 504():147-61. PubMed ID: 22264533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The three-dimensional architecture of the mitotic spindle, analyzed by confocal fluorescence and electron microscopy.
    Merdes A; Stelzer EH; De Mey J
    J Electron Microsc Tech; 1991 May; 18(1):61-73. PubMed ID: 2056352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-resolution multimode digital microscope system.
    Salmon ED; Shaw SL; Waters JC; Waterman-Storer CM; Maddox PS; Yeh E; Bloom K
    Methods Cell Biol; 2013; 114():179-210. PubMed ID: 23931508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Live cell imaging of F-actin dynamics via Fluorescent Speckle Microscopy (FSM).
    Lim J; Danuser G
    J Vis Exp; 2009 Aug; (30):. PubMed ID: 19684563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid dynamics of the microtubule binding of ensconsin in vivo.
    Bulinski JC; Odde DJ; Howell BJ; Salmon TD; Waterman-Storer CM
    J Cell Sci; 2001 Nov; 114(Pt 21):3885-97. PubMed ID: 11719555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How we discovered fluorescent speckle microscopy.
    Salmon ED; Waterman CM
    Mol Biol Cell; 2011 Nov; 22(21):3940-2. PubMed ID: 22039068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtubule dynamics in the chromosomal spindle fiber: analysis by fluorescence and high-resolution polarization microscopy.
    Cassimeris L; Inoué S; Salmon ED
    Cell Motil Cytoskeleton; 1988; 10(1-2):185-96. PubMed ID: 3180243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational analysis of F-actin turnover in cortical actin meshworks using fluorescent speckle microscopy.
    Ponti A; Vallotton P; Salmon WC; Waterman-Storer CM; Danuser G
    Biophys J; 2003 May; 84(5):3336-52. PubMed ID: 12719263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Converging populations of f-actin promote breakage of associated microtubules to spatially regulate microtubule turnover in migrating cells.
    Gupton SL; Salmon WC; Waterman-Storer CM
    Curr Biol; 2002 Nov; 12(22):1891-9. PubMed ID: 12445381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.