These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 9811791)
41. Identification and characterization of potential NBS-encoding resistance genes and induction kinetics of a putative candidate gene associated with downy mildew resistance in Cucumis. Wan H; Zhao Z; Malik AA; Qian C; Chen J BMC Plant Biol; 2010 Aug; 10():186. PubMed ID: 20731821 [TBL] [Abstract][Full Text] [Related]
42. Involvement of S-nitrosothiols modulation by S-nitrosoglutathione reductase in defence responses of lettuce and wild Lactuca spp. to biotrophic mildews. Tichá T; Sedlářová M; Činčalová L; Trojanová ZD; Mieslerová B; Lebeda A; Luhová L; Petřivalský M Planta; 2018 May; 247(5):1203-1215. PubMed ID: 29417270 [TBL] [Abstract][Full Text] [Related]
43. Genome-wide association mapping reveals genomic regions frequently associated with lettuce field resistance to downy mildew. Simko I; Peng H; Sthapit Kandel J; Zhao R Theor Appl Genet; 2022 Jun; 135(6):2009-2024. PubMed ID: 35419653 [TBL] [Abstract][Full Text] [Related]
44. Three combined quantitative trait loci from nonhost Lactuca saligna are sufficient to provide complete resistance of lettuce against Bremia lactucae. Zhang NW; Pelgrom K; Niks RE; Visser RG; Jeuken MJ Mol Plant Microbe Interact; 2009 Sep; 22(9):1160-8. PubMed ID: 19656050 [TBL] [Abstract][Full Text] [Related]
45. Identification of restriction fragment length polymorphism and random amplified polymorphic DNA markers linked to downy mildew resistance genes in lettuce, using near-isogenic lines. Paran I; Kesseli R; Michelmore R Genome; 1991 Dec; 34(6):1021-7. PubMed ID: 1685721 [TBL] [Abstract][Full Text] [Related]
46. Molecular analysis of a large subtelomeric nucleotide-binding-site-leucine-rich-repeat family in two representative genotypes of the major gene pools of Phaseolus vulgaris. Geffroy V; Macadré C; David P; Pedrosa-Harand A; Sévignac M; Dauga C; Langin T Genetics; 2009 Feb; 181(2):405-19. PubMed ID: 19087965 [TBL] [Abstract][Full Text] [Related]
47. Rin4 causes hybrid necrosis and race-specific resistance in an interspecific lettuce hybrid. Jeuken MJ; Zhang NW; McHale LK; Pelgrom K; den Boer E; Lindhout P; Michelmore RW; Visser RG; Niks RE Plant Cell; 2009 Oct; 21(10):3368-78. PubMed ID: 19855048 [TBL] [Abstract][Full Text] [Related]
48. Host interactors of effector proteins of the lettuce downy mildew Bremia lactucae obtained by yeast two-hybrid screening. Pelgrom AJE; Meisrimler CN; Elberse J; Koorman T; Boxem M; Van den Ackerveken G PLoS One; 2020; 15(5):e0226540. PubMed ID: 32396563 [TBL] [Abstract][Full Text] [Related]
49. The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Liu X; Lin F; Wang L; Pan Q Genetics; 2007 Aug; 176(4):2541-9. PubMed ID: 17507669 [TBL] [Abstract][Full Text] [Related]
50. Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Botella MA; Parker JE; Frost LN; Bittner-Eddy PD; Beynon JL; Daniels MJ; Holub EB; Jones JD Plant Cell; 1998 Nov; 10(11):1847-60. PubMed ID: 9811793 [TBL] [Abstract][Full Text] [Related]
51. Multiple downy mildew effectors target the stress-related NAC transcription factor LsNAC069 in lettuce. Meisrimler CN; Pelgrom AJE; Oud B; Out S; Van den Ackerveken G Plant J; 2019 Sep; 99(6):1098-1115. PubMed ID: 31077456 [TBL] [Abstract][Full Text] [Related]
53. Positional cloning of a candidate gene for resistance to the sunflower downy mildew, Plasmopara halstedii race 300. Franchel J; Bouzidi MF; Bronner G; Vear F; Nicolas P; Mouzeyar S Theor Appl Genet; 2013 Feb; 126(2):359-67. PubMed ID: 23052021 [TBL] [Abstract][Full Text] [Related]
54. Characterization and mapping of NBS-LRR resistance gene analogs in apricot (Prunus armeniaca L.). Soriano JM; Vilanova S; Romero C; Llácer G; Badenes ML Theor Appl Genet; 2005 Mar; 110(5):980-9. PubMed ID: 15714329 [TBL] [Abstract][Full Text] [Related]
55. Development and dissection of diagnostic SNP markers for the downy mildew resistance genes Pl Qi LL; Talukder ZI; Hulke BS; Foley ME Mol Genet Genomics; 2017 Jun; 292(3):551-563. PubMed ID: 28160079 [TBL] [Abstract][Full Text] [Related]
56. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Yu YG; Buss GR; Maroof MA Proc Natl Acad Sci U S A; 1996 Oct; 93(21):11751-6. PubMed ID: 8876209 [TBL] [Abstract][Full Text] [Related]
57. The isolation and mapping of disease resistance gene analogs in maize. Collins NC; Webb CA; Seah S; Ellis JG; Hulbert SH; Pryor A Mol Plant Microbe Interact; 1998 Oct; 11(10):968-78. PubMed ID: 9768514 [TBL] [Abstract][Full Text] [Related]
58. Dissection of the fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Simons G; Groenendijk J; Wijbrandi J; Reijans M; Groenen J; Diergaarde P; Van der Lee T; Bleeker M; Onstenk J; de Both M; Haring M; Mes J; Cornelissen B; Zabeau M; Vos P Plant Cell; 1998 Jun; 10(6):1055-68. PubMed ID: 9634592 [TBL] [Abstract][Full Text] [Related]
59. Genomic organization, rapid evolution and meiotic instability of nucleotide-binding-site-encoding genes in a new fruit crop, "chestnut rose". Xu Q; Wen X; Deng X Genetics; 2008 Apr; 178(4):2081-91. PubMed ID: 18245857 [TBL] [Abstract][Full Text] [Related]
60. Comparative analysis of peanut NBS-LRR gene clusters suggests evolutionary innovation among duplicated domains and erosion of gene microsynteny. Ratnaparkhe MB; Wang X; Li J; Compton RO; Rainville LK; Lemke C; Kim C; Tang H; Paterson AH New Phytol; 2011 Oct; 192(1):164-178. PubMed ID: 21707619 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]