These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 9811818)

  • 1. Crystal structure of the ribosomal RNA domain essential for binding elongation factors.
    Correll CC; Munishkin A; Chan YL; Ren Z; Wool IG; Steitz TA
    Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13436-41. PubMed ID: 9811818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The two faces of the Escherichia coli 23 S rRNA sarcin/ricin domain: the structure at 1.11 A resolution.
    Correll CC; Wool IG; Munishkin A
    J Mol Biol; 1999 Sep; 292(2):275-87. PubMed ID: 10493875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of in vitro and in vivo mutations in non-conserved nucleotides in the ribosomal RNA recognition domain for the ribotoxins ricin and sarcin and the translation elongation factors.
    Macbeth MR; Wool IG
    J Mol Biol; 1999 Jan; 285(2):567-80. PubMed ID: 9878430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of sarcin-ricin rRNA motif.
    Spacková N; Sponer J
    Nucleic Acids Res; 2006; 34(2):697-708. PubMed ID: 16456030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The conformation of the sarcin/ricin loop from 28S ribosomal RNA.
    Szewczak AA; Moore PB; Chang YL; Wool IG
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9581-5. PubMed ID: 8415744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. Analysis with tetraloop mutants.
    Glück A; Endo Y; Wool IG
    J Mol Biol; 1992 Jul; 226(2):411-24. PubMed ID: 1379305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and stability of variants of the sarcin-ricin loop of 28S rRNA: NMR studies of the prokaryotic SRL and a functional mutant.
    Seggerson K; Moore PB
    RNA; 1998 Oct; 4(10):1203-15. PubMed ID: 9769095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribosomal RNA identity elements for recognition by ricin and by alpha-sarcin: mutation in the putative CG pair that closes a GAGA tetraloop.
    Endo Y; Gluck A; Wool IG
    Nucleic Acids Symp Ser; 1993; (29):165-6. PubMed ID: 8247752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of restrictocin-inhibitor complexes with implications for RNA recognition and base flipping.
    Yang X; Gérczei T; Glover LT; Correll CC
    Nat Struct Biol; 2001 Nov; 8(11):968-73. PubMed ID: 11685244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ribosomal RNA identity elements for ricin and for alpha-sarcin: mutations in the putative CG pair that closes a GAGA tetraloop.
    Glück A; Endo Y; Wool IG
    Nucleic Acids Res; 1994 Feb; 22(3):321-4. PubMed ID: 8127668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sarcin/ricin loop, a modular RNA.
    Szewczak AA; Moore PB
    J Mol Biol; 1995 Mar; 247(1):81-98. PubMed ID: 7897662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the 28 S ribosomal RNA identity element (G4319) for alpha-sarcin and the relationship of recognition to the selection of the catalytic site.
    Glück A; Wool IG
    J Mol Biol; 1996 Mar; 256(5):838-48. PubMed ID: 8601835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depurination of A4256 in 28 S rRNA by the ribosome-inactivating proteins from barley and ricin results in different ribosome conformations.
    Holmberg L; Nygård O
    J Mol Biol; 1996 May; 259(1):81-94. PubMed ID: 8648651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural energetics and base-pair opening dynamics in sarcin-ricin domain RNA.
    Chen C; Jiang L; Michalczyk R; Russu IM
    Biochemistry; 2006 Nov; 45(45):13606-13. PubMed ID: 17087514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The common and the distinctive features of the bulged-G motif based on a 1.04 A resolution RNA structure.
    Correll CC; Beneken J; Plantinga MJ; Lubbers M; Chan YL
    Nucleic Acids Res; 2003 Dec; 31(23):6806-18. PubMed ID: 14627814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the conformation of the alpha sarcin stem-loop of 28S rRNA.
    Szewczak AA; Chan YL; Moore PB; Wool IG
    Biochimie; 1991; 73(7-8):871-7. PubMed ID: 1742362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction sites of ribosome-bound eukaryotic elongation factor 2 in 18S and 28S rRNA.
    Holmberg L; Nygård O
    Biochemistry; 1994 Dec; 33(50):15159-67. PubMed ID: 7999776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linkage between substrate recognition and catalysis during cleavage of sarcin/ricin loop RNA by restrictocin.
    Korennykh AV; Plantinga MJ; Correll CC; Piccirilli JA
    Biochemistry; 2007 Nov; 46(44):12744-56. PubMed ID: 17929942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trp221 is involved in the protective effect of elongation factor eEF-2 on the ricin/alpha-sarcin site of the ribosome.
    Guillot D; Lavergne JP; Reboud JP
    J Biol Chem; 1993 Dec; 268(35):26082-4. PubMed ID: 8253723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribosomal RNA identity elements for ricin A-chain recognition and catalysis.
    Endo Y; Glück A; Wool IG
    J Mol Biol; 1991 Sep; 221(1):193-207. PubMed ID: 1920404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.