These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 9812202)

  • 21. Arterial wall chondroitin sulfate proteoglycans: diverse molecules with distinct roles in lipoprotein retention and atherogenesis.
    Williams KJ
    Curr Opin Lipidol; 2001 Oct; 12(5):477-87. PubMed ID: 11561166
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic defects in lipoprotein metabolism. Elevation of atherogenic lipoproteins caused by impaired catabolism.
    Mahley RW; Weisgraber KH; Innerarity TL; Rall SC
    JAMA; 1991 Jan; 265(1):78-83. PubMed ID: 1845776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arterial intimal retention of pro-atherogenic lipoproteins in insulin deficient rabbits and rats.
    Proctor SD; Pabla CK; Mamo JC
    Atherosclerosis; 2000 Apr; 149(2):315-22. PubMed ID: 10729381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of native and modified low-density lipoproteins with extracellular matrix.
    Chait A; Wight TN
    Curr Opin Lipidol; 2000 Oct; 11(5):457-63. PubMed ID: 11048888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular metabolism of triglyceride-rich lipoproteins.
    Heeren J; Beisiegel U
    Curr Opin Lipidol; 2001 Jun; 12(3):255-60. PubMed ID: 11353327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sphingomyelinase induces aggregation and fusion of small very low-density lipoprotein and intermediate-density lipoprotein particles and increases their retention to human arterial proteoglycans.
    Oörni K; Posio P; Ala-Korpela M; Jauhiainen M; Kovanen PT
    Arterioscler Thromb Vasc Biol; 2005 Aug; 25(8):1678-83. PubMed ID: 15879301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins.
    Schissel SL; Tweedie-Hardman J; Rapp JH; Graham G; Williams KJ; Tabas I
    J Clin Invest; 1996 Sep; 98(6):1455-64. PubMed ID: 8823312
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased apolipoprotein deposits in early atherosclerotic lesions distinguish symptomatic from asymptomatic patients.
    Wyler von Ballmoos M; Dubler D; Mirlacher M; Cathomas G; Muser J; Biedermann BC
    Arterioscler Thromb Vasc Biol; 2006 Feb; 26(2):359-64. PubMed ID: 16322531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atherogenic lipoproteins resulting from genetic defects of apolipoproteins B and E.
    Weisgraber KH; Innerarity TL; Rall SC; Mahley RW
    Ann N Y Acad Sci; 1990; 598():37-48. PubMed ID: 2248450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intimal retention of cholesterol derived from apolipoprotein B100- and apolipoprotein B48-containing lipoproteins in carotid arteries of Watanabe heritable hyperlipidemic rabbits.
    Proctor SD; Mamo JC
    Arterioscler Thromb Vasc Biol; 2003 Sep; 23(9):1595-600. PubMed ID: 12842838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolism and Modification of Apolipoprotein B-Containing Lipoproteins Involved in Dyslipidemia and Atherosclerosis.
    Morita SY
    Biol Pharm Bull; 2016; 39(1):1-24. PubMed ID: 26725424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lipoprotein(a): a genetically-determined lipoprotein variant in which a protein of the plasminogen family is linked to APO B100.
    Scanu AM
    Ann Ital Med Int; 1987; 2(4):259-65. PubMed ID: 2978948
    [No Abstract]   [Full Text] [Related]  

  • 33. Serum amyloid A and lipoprotein retention in murine models of atherosclerosis.
    O'Brien KD; McDonald TO; Kunjathoor V; Eng K; Knopp EA; Lewis K; Lopez R; Kirk EA; Chait A; Wight TN; deBeer FC; LeBoeuf RC
    Arterioscler Thromb Vasc Biol; 2005 Apr; 25(4):785-90. PubMed ID: 15692094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inflammatory reactions in the pathogenesis of atherosclerosis.
    Fan J; Watanabe T
    J Atheroscler Thromb; 2003; 10(2):63-71. PubMed ID: 12740479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell-mediated lipoprotein transport: a novel anti-atherogenic concept.
    Bovenberg SA; Alipour A; Elte JW; Rietveld AP; Janssen JW; van de Geijn GJ; Njo TN; van Mechelen R; Hervas SM; Cabezas MC
    Atheroscler Suppl; 2010 Jun; 11(1):25-9. PubMed ID: 20427243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipoprotein physiology and its relationship to atherogenesis.
    Ginsberg HN
    Endocrinol Metab Clin North Am; 1990 Jun; 19(2):211-28. PubMed ID: 2192871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Progression of renal failure: role of apolipoprotein B-containing lipoproteins.
    Attman PO; Samuelsson O; Alaupovic P
    Kidney Int Suppl; 1997 Dec; 63():S98-101. PubMed ID: 9407433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Triglyceride-rich lipoproteins from subjects with type 2 diabetes do not demonstrate increased binding to biglycan, a vascular proteoglycan.
    Tannock LR; Olin KL; Barrett PH; Wight TN; Chait A
    J Clin Endocrinol Metab; 2002 Jan; 87(1):35-40. PubMed ID: 11788619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pharmacological modulation of cholesteryl ester transfer protein, a new therapeutic target in atherogenic dyslipidemia.
    Le Goff W; Guerin M; Chapman MJ
    Pharmacol Ther; 2004 Jan; 101(1):17-38. PubMed ID: 14729390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accumulation of biglycan and perlecan, but not versican, in lesions of murine models of atherosclerosis.
    Kunjathoor VV; Chiu DS; O'Brien KD; LeBoeuf RC
    Arterioscler Thromb Vasc Biol; 2002 Mar; 22(3):462-8. PubMed ID: 11884291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.