These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 9812250)
1. 17-beta-estradiol upregulates the stress response in Candida albicans: implications for microbial virulence. O'Connor C; Essmann M; Larsen B Infect Dis Obstet Gynecol; 1998; 6(4):176-81. PubMed ID: 9812250 [TBL] [Abstract][Full Text] [Related]
2. Estrogen effects on Candida albicans: a potential virulence-regulating mechanism. Zhang X; Essmann M; Burt ET; Larsen B J Infect Dis; 2000 Apr; 181(4):1441-6. PubMed ID: 10762574 [TBL] [Abstract][Full Text] [Related]
3. Differential Roles of a Family of Flavodoxin-Like Proteins That Promote Resistance to Quinone-Mediated Oxidative Stress in Candida albicans. Foderaro JE; Konopka JB Infect Immun; 2021 Mar; 89(4):. PubMed ID: 33468576 [TBL] [Abstract][Full Text] [Related]
4. Thermotolerance and the heat-shock response in Candida albicans. Zeuthen ML; Howard DH J Gen Microbiol; 1989 Sep; 135(9):2509-18. PubMed ID: 2697750 [TBL] [Abstract][Full Text] [Related]
5. Isolation and partial characterization of Hsp90 from Candida albicans. Burt ET; Daly R; Hoganson D; Tsirulnikov Y; Essmann M; Larsen B Ann Clin Lab Sci; 2003; 33(1):86-93. PubMed ID: 12661902 [TBL] [Abstract][Full Text] [Related]
6. The MAP kinase-activated protein kinase Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen Candida albicans. Li X; Du W; Zhao J; Zhang L; Zhu Z; Jiang L FEMS Yeast Res; 2010 Jun; 10(4):441-51. PubMed ID: 20402792 [TBL] [Abstract][Full Text] [Related]
7. Heat shock and heat stroke proteins observed during germination of the blastoconidia of Candida albicans. Dabrowa N; Howard DH Infect Immun; 1984 May; 44(2):537-9. PubMed ID: 6370869 [TBL] [Abstract][Full Text] [Related]
8. Role of trehalose-6P phosphatase (TPS2) in stress tolerance and resistance to macrophage killing in Candida albicans. Martínez-Esparza M; Martínez-Vicente E; González-Párraga P; Ros JM; García-Peñarrubia P; Argüelles JC Int J Med Microbiol; 2009 Aug; 299(6):453-64. PubMed ID: 19231283 [TBL] [Abstract][Full Text] [Related]
9. Impact of oxidative and osmotic stresses on Candida albicans biofilm formation. Pemmaraju SC; Padmapriya K; Pruthi PA; Prasad R; Pruthi V Biofouling; 2016 Sep; 32(8):897-909. PubMed ID: 27472386 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the adaptive oxidative stress response of Candida albicans. Jamieson DJ; Stephen DW; Terrière EC FEMS Microbiol Lett; 1996 Apr; 138(1):83-8. PubMed ID: 8674975 [TBL] [Abstract][Full Text] [Related]
11. Phosphoglycerate kinase and fructose bisphosphate aldolase of Candida albicans as new antigens recognized by human salivary IgA. Calcedo R; Ramirez-Garcia A; Abad A; Rementeria A; Pontón J; Hernando FL Rev Iberoam Micol; 2012; 29(3):172-4. PubMed ID: 21906693 [TBL] [Abstract][Full Text] [Related]
12. Candida albicans-conditioned medium protects yeast cells from oxidative stress: a possible link between quorum sensing and oxidative stress resistance. Westwater C; Balish E; Schofield DA Eukaryot Cell; 2005 Oct; 4(10):1654-61. PubMed ID: 16215173 [TBL] [Abstract][Full Text] [Related]
13. Genistein effects on growth and cell cycle of Candida albicans. Yazdanyar A; Essmann M; Larsen B J Biomed Sci; 2001; 8(2):153-9. PubMed ID: 11287745 [TBL] [Abstract][Full Text] [Related]
14. Expression of CDR1, a multidrug resistance gene of Candida albicans: transcriptional activation by heat shock, drugs and human steroid hormones. Krishnamurthy S; Gupta V; Prasad R; Panwar SL; Prasad R FEMS Microbiol Lett; 1998 Mar; 160(2):191-7. PubMed ID: 9532737 [TBL] [Abstract][Full Text] [Related]
15. Isolation and identification of a 92-kDa stress induced protein from Candida albicans. Burt ET; O'Connor C; Larsen B Mycopathologia; 1999; 147(1):13-20. PubMed ID: 10872511 [TBL] [Abstract][Full Text] [Related]
16. Nutritional stress proteins in Candida albicans. Dabrowa N; Zeuthen ML; Howard DH J Gen Microbiol; 1990 Jul; 136(7):1387-91. PubMed ID: 2230722 [TBL] [Abstract][Full Text] [Related]
17. Gong Y; Li T; Yu C; Sun S Front Cell Infect Microbiol; 2017; 7():520. PubMed ID: 29312897 [TBL] [Abstract][Full Text] [Related]
18. High-dose methylprednisolone influences the physiology and virulence of Candida albicans ambiguously and enhances the candidacidal activity of the polyene antibiotic amphotericin B and the superoxide-generating agent menadione. Gyetvai A; Emri T; Fekete A; Varga Z; Gazdag Z; Pesti M; Belágyi J; Emõdy L; Pócsi I; Lenkey B FEMS Yeast Res; 2007 Mar; 7(2):265-75. PubMed ID: 17266730 [TBL] [Abstract][Full Text] [Related]
19. Mild Heat Stress Affects on the Cell Wall Structure in Candida albicans Biofilm. Ikezaki S; Cho T; Nagao JI; Tasaki S; Yamaguchi M; Arita-Morioka KI; Yasumatsu K; Chibana H; Ikebe T; Tanaka Y Med Mycol J; 2019; 60(2):29-37. PubMed ID: 31155569 [TBL] [Abstract][Full Text] [Related]
20. Adaptive tolerance to oxidative stress and the induction of antioxidant enzymatic activities in Candida albicans are independent of the Hog1 and Cap1-mediated pathways. Gónzalez-Párraga P; Alonso-Monge R; Plá J; Argüelles JC FEMS Yeast Res; 2010 Sep; 10(6):747-56. PubMed ID: 20608985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]