These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65 related articles for article (PubMed ID: 9812750)
1. Protective effects of 17 beta-estradiol on endothelial function injured by oxidized low-density lipoproteins. Peng CF; Li YJ; Deng HW; Xiong XM Zhongguo Yao Li Xue Bao; 1996 May; 17(3):252-5. PubMed ID: 9812750 [TBL] [Abstract][Full Text] [Related]
2. Effect of pravastatin on impaired endothelium-dependent relaxation induced by lysophosphatidylcholine in rat aorta. Deng HF; Xiong Y Acta Pharmacol Sin; 2005 Jan; 26(1):92-8. PubMed ID: 15659120 [TBL] [Abstract][Full Text] [Related]
3. High density lipoprotein and low density lipoprotein attenuate the inhibitory effects of oxidized low density lipoprotein on endothelium-dependent arterial relaxation. Matsuda Y Kobe J Med Sci; 1993 Feb; 39(1):1-14. PubMed ID: 8366661 [TBL] [Abstract][Full Text] [Related]
4. Effect of calcitonin gene-related peptide-induced preconditioning on attenuated endothelium-dependent vasorelaxation induced by lysophosphatidylcholine. Tang YH; Lu R; Li YJ; Peng CF; Deng HW Zhongguo Yao Li Xue Bao; 1997 Sep; 18(5):405-7. PubMed ID: 10322927 [TBL] [Abstract][Full Text] [Related]
5. Dietary n-3 polyunsaturated fatty acids and endothelium dysfunction induced by lysophosphatidylcholine in Syrian hamster aorta. Lucas A; Grynberg A; Lacour B; Goirand F Metabolism; 2008 Feb; 57(2):233-40. PubMed ID: 18191054 [TBL] [Abstract][Full Text] [Related]
6. High density lipoprotein reverses inhibitory effect of oxidized low density lipoprotein on endothelium-dependent arterial relaxation. Matsuda Y; Hirata K; Inoue N; Suematsu M; Kawashima S; Akita H; Yokoyama M Circ Res; 1993 May; 72(5):1103-9. PubMed ID: 8477522 [TBL] [Abstract][Full Text] [Related]
7. Involvement of endothelial cell-derived CGRP in heat stress-induced protection of endothelial function. Ye F; Deng PY; Li D; Luo D; Li NS; Deng S; Deng HW; Li YJ Vascul Pharmacol; 2007 Apr; 46(4):238-46. PubMed ID: 17140857 [TBL] [Abstract][Full Text] [Related]
8. Effect of training frequency on endothelium-dependent vasorelaxation in rats. Heylen E; Guerrero F; Mansourati J; Theron M; Thioub S; Saïag B Eur J Cardiovasc Prev Rehabil; 2008 Feb; 15(1):52-8. PubMed ID: 18277186 [TBL] [Abstract][Full Text] [Related]
9. Effect of 17 beta-estradiol on endothelium-dependent responses in the rabbit. Gisclard V; Miller VM; Vanhoutte PM J Pharmacol Exp Ther; 1988 Jan; 244(1):19-22. PubMed ID: 3121846 [TBL] [Abstract][Full Text] [Related]
10. Statins prevent oxidized low-density lipoprotein- and lysophosphatidylcholine-induced proliferation of human endothelial cells. Schaefer CA; Kuhlmann CR; Gast C; Weiterer S; Li F; Most AK; Neumann T; Backenköhler U; Tillmanns H; Waldecker B; Wiecha J; Erdogan A Vascul Pharmacol; 2004 Mar; 41(2):67-73. PubMed ID: 15196477 [TBL] [Abstract][Full Text] [Related]
11. Gender differences in protein kinase G-mediated vasorelaxation of rat aorta. Teede H; van der Zypp A; Majewski H Clin Sci (Lond); 2001 May; 100(5):473-9. PubMed ID: 11294687 [TBL] [Abstract][Full Text] [Related]
12. Protective effects of Ginkgo biloba extract against lysophosphatidylcholine-induced vascular endothelial cell damage. Chen JX; Chen WZ; Huang HL; Chen LX; Xie ZZ; Zhu BY Zhongguo Yao Li Xue Bao; 1998 Jul; 19(4):359-63. PubMed ID: 10375785 [TBL] [Abstract][Full Text] [Related]
13. Lysophosphatidylcholine potentiates phenylephrine responses in rat mesenteric arterial bed through modulation of thromboxane A2. Zhang R; Rodrigues B; MacLeod KM J Pharmacol Exp Ther; 2006 Apr; 317(1):355-61. PubMed ID: 16394197 [TBL] [Abstract][Full Text] [Related]
14. A long-term fish diet modifies the toxic properties of human partially oxidized LDL on vascular preparations in vitro. Seppo L; Karjala K; Nevala R; Korpela R; Lähteenmäki T; Solatunturi E; Tikkanen MJ; Vapaatalo H J Physiol Pharmacol; 2000 Jun; 51(2):251-65. PubMed ID: 10898098 [TBL] [Abstract][Full Text] [Related]
15. Protective effect of tetramethylpyrazine against damages of aortic endothelial cells elicited by low-density lipoproteins. Li YJ; Li YJ; Wu JX; Yu XJ; Yan YF Zhongguo Yao Li Xue Bao; 1994 Sep; 15(5):407-10. PubMed ID: 7717062 [TBL] [Abstract][Full Text] [Related]
16. Deleterious effect of glycation on the ability of HDL to counteract the inhibitory effect of oxidized LDL on endothelium-dependent vasorelaxation. Brindisi MC; Duvillard L; Monier S; Vergès B; Perségol L Diabetes Metab Res Rev; 2013 Nov; 29(8):618-23. PubMed ID: 23908137 [TBL] [Abstract][Full Text] [Related]
17. The senescence-accelerated mouse (SAM-P8) as a model for the study of vascular functional alterations during aging. Lloréns S; de Mera RM; Pascual A; Prieto-Martín A; Mendizábal Y; de Cabo C; Nava E; Jordán J Biogerontology; 2007 Dec; 8(6):663-72. PubMed ID: 17786580 [TBL] [Abstract][Full Text] [Related]
18. Oxidative modification of low-density lipoproteins and the inhibition of relaxations mediated by endothelium-derived nitric oxide in rabbit aorta. Plane F; Bruckdorfer KR; Kerr P; Steuer A; Jacobs M Br J Pharmacol; 1992 Jan; 105(1):216-22. PubMed ID: 1596684 [TBL] [Abstract][Full Text] [Related]
19. Pioglitazone, a PPARgamma agonist, restores endothelial function in aorta of streptozotocin-induced diabetic rats. Majithiya JB; Paramar AN; Balaraman R Cardiovasc Res; 2005 Apr; 66(1):150-61. PubMed ID: 15769458 [TBL] [Abstract][Full Text] [Related]
20. The mechanism of vasorelaxation induced by Schisandra chinensis extract in rat thoracic aorta. Park JY; Shin HK; Lee YJ; Choi YW; Bae SS; Kim CD J Ethnopharmacol; 2009 Jan; 121(1):69-73. PubMed ID: 18983904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]