BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9812986)

  • 1. The NIFS protein can function as a selenide delivery protein in the biosynthesis of selenophosphate.
    Lacourciere GM; Stadtman TC
    J Biol Chem; 1998 Nov; 273(47):30921-6. PubMed ID: 9812986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli NifS-like proteins provide selenium in the pathway for the biosynthesis of selenophosphate.
    Lacourciere GM; Mihara H; Kurihara T; Esaki N; Stadtman TC
    J Biol Chem; 2000 Aug; 275(31):23769-73. PubMed ID: 10829016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of selenocysteine as a source of selenium for selenophosphate biosynthesis.
    Lacourciere GM; Stadtman TC
    Biofactors; 2001; 14(1-4):69-74. PubMed ID: 11568442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism for the desulfurization of L-cysteine catalyzed by the nifS gene product.
    Zheng L; White RH; Cash VL; Dean DR
    Biochemistry; 1994 Apr; 33(15):4714-20. PubMed ID: 8161529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic formation of a nitrogenase iron-sulfur cluster.
    Zheng L; Dean DR
    J Biol Chem; 1994 Jul; 269(29):18723-6. PubMed ID: 8034623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cysteine sulfinate desulfinase, a NIFS-like protein of Escherichia coli with selenocysteine lyase and cysteine desulfurase activities. Gene cloning, purification, and characterization of a novel pyridoxal enzyme.
    Mihara H; Kurihara T; Yoshimura T; Soda K; Esaki N
    J Biol Chem; 1997 Sep; 272(36):22417-24. PubMed ID: 9278392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and mutational studies of three NifS homologs from Escherichia coli: mechanistic difference between L-cysteine desulfurase and L-selenocysteine lyase reactions.
    Mihara H; Kurihara T; Yoshimura T; Esaki N
    J Biochem; 2000 Apr; 127(4):559-67. PubMed ID: 10739946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis.
    Zheng L; White RH; Cash VL; Jack RF; Dean DR
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2754-8. PubMed ID: 8464885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selenium is mobilized in vivo from free selenocysteine and is incorporated specifically into formate dehydrogenase H and tRNA nucleosides.
    Lacourciere GM
    J Bacteriol; 2002 Apr; 184(7):1940-6. PubMed ID: 11889101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cDNA cloning, purification, and characterization of mouse liver selenocysteine lyase. Candidate for selenium delivery protein in selenoprotein synthesis.
    Mihara H; Kurihara T; Watanabe T; Yoshimura T; Esaki N
    J Biol Chem; 2000 Mar; 275(9):6195-200. PubMed ID: 10692412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of external aldimine of Escherichia coli CsdB, an IscS/NifS homolog: implications for its specificity toward selenocysteine.
    Mihara H; Fujii T; Kato S; Kurihara T; Hata Y; Esaki N
    J Biochem; 2002 May; 131(5):679-85. PubMed ID: 11983074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selenocysteine Lyase.
    Stadtman TC
    EcoSal Plus; 2004 Dec; 1(1):. PubMed ID: 26443359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic properties of selenophosphate synthetases: comparison of the selenocysteine-containing enzyme from Haemophilus influenzae with the corresponding cysteine-containing enzyme from Escherichia coli.
    Lacourciere GM; Stadtman TC
    Proc Natl Acad Sci U S A; 1999 Jan; 96(1):44-8. PubMed ID: 9874769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of iron-sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii.
    Zheng L; Cash VL; Flint DH; Dean DR
    J Biol Chem; 1998 May; 273(21):13264-72. PubMed ID: 9582371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the NifS-like domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration.
    Heidenreich T; Wollers S; Mendel RR; Bittner F
    J Biol Chem; 2005 Feb; 280(6):4213-8. PubMed ID: 15561708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escherichia coli mutant SELD enzymes. The cysteine 17 residue is essential for selenophosphate formation from ATP and selenide.
    Kim IY; Veres Z; Stadtman TC
    J Biol Chem; 1992 Sep; 267(27):19650-4. PubMed ID: 1527085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nifS-like gene, csdB, encodes an Escherichia coli counterpart of mammalian selenocysteine lyase. Gene cloning, purification, characterization and preliminary x-ray crystallographic studies.
    Mihara H; Maeda M; Fujii T; Kurihara T; Hata Y; Esaki N
    J Biol Chem; 1999 May; 274(21):14768-72. PubMed ID: 10329673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of selenophosphate.
    Lacourciere GM
    Biofactors; 1999; 10(2-3):237-44. PubMed ID: 10609888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the E. coli NifS CsdB protein at 2.0 A reveals the structural basis for perselenide and persulfide intermediate formation.
    Lima CD
    J Mol Biol; 2002 Feb; 315(5):1199-208. PubMed ID: 11827487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the selenium-over-sulfur substrate specificity and kinetics of a bacterial selenocysteine lyase.
    Johnstone MA; Nelson SJ; O'Leary C; Self WT
    Biochimie; 2021 Mar; 182():166-176. PubMed ID: 33444662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.