These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9813045)

  • 21. Presence of a characteristic D-D-E motif in IS1 transposase.
    Ohta S; Tsuchida K; Choi S; Sekine Y; Shiga Y; Ohtsubo E
    J Bacteriol; 2002 Nov; 184(22):6146-54. PubMed ID: 12399484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA binding domains in Tn3 transposase.
    Maekawa T; Amemura-Maekawa J; Ohtsubo E
    Mol Gen Genet; 1993 Jan; 236(2-3):267-74. PubMed ID: 8382339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The N-terminus of Himar1 mariner transposase mediates multiple activities during transposition.
    Butler MG; Chakraborty SA; Lampe DJ
    Genetica; 2006 May; 127(1-3):351-66. PubMed ID: 16850239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The ancient mariner sails again: transposition of the human Hsmar1 element by a reconstructed transposase and activities of the SETMAR protein on transposon ends.
    Miskey C; Papp B; Mátés L; Sinzelle L; Keller H; Izsvák Z; Ivics Z
    Mol Cell Biol; 2007 Jun; 27(12):4589-600. PubMed ID: 17403897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the transposase encoded by IS256, the prototype of a major family of bacterial insertion sequence elements.
    Hennig S; Ziebuhr W
    J Bacteriol; 2010 Aug; 192(16):4153-63. PubMed ID: 20543074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The wing of the enhancer-binding domain of Mu phage transposase is flexible and is essential for efficient transposition.
    Clubb RT; Mizuuchi M; Huth JR; Omichinski JG; Savilahti H; Mizuuchi K; Clore GM; Gronenborn AM
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1146-50. PubMed ID: 8577730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The same two monomers within a MuA tetramer provide the DDE domains for the strand cleavage and strand transfer steps of transposition.
    Namgoong SY; Harshey RM
    EMBO J; 1998 Jul; 17(13):3775-85. PubMed ID: 9649447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutational analysis of domain II beta of bacteriophage Mu transposase: domains II alpha and II beta belong to different catalytic complementation groups.
    Namgoong SY; Kim K; Saxena P; Yang JY; Jayaram M; Giedroc DP; Harshey RM
    J Mol Biol; 1998 Jan; 275(2):221-32. PubMed ID: 9466905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of the human Hsmar1-derived transposase domain in the DNA repair enzyme Metnase.
    Goodwin KD; He H; Imasaki T; Lee SH; Georgiadis MM
    Biochemistry; 2010 Jul; 49(27):5705-13. PubMed ID: 20521842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The C-terminus of the Hermes transposase contains a protein multimerization domain.
    Michel K; O'Brochta DA; Atkinson PW
    Insect Biochem Mol Biol; 2003 Oct; 33(10):959-70. PubMed ID: 14505689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutational analysis of active-site residues in the Mycobacterium leprae RecA intein, a LAGLIDADG homing endonuclease: Asp(122) and Asp(193) are crucial to the double-stranded DNA cleavage activity whereas Asp(218) is not.
    Singh P; Tripathi P; Muniyappa K
    Protein Sci; 2010 Jan; 19(1):111-23. PubMed ID: 19937653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway.
    Levchenko I; Yamauchi M; Baker TA
    Genes Dev; 1997 Jun; 11(12):1561-72. PubMed ID: 9203582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common "D35E" motif.
    Doak TG; Doerder FP; Jahn CL; Herrick G
    Proc Natl Acad Sci U S A; 1994 Feb; 91(3):942-6. PubMed ID: 8302872
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Domain III function of Mu transposase analysed by directed placement of subunits within the transpososome.
    Mariconda S; Namgoong SY; Yoon KH; Jiang H; Harshey RM
    J Biosci; 2000 Dec; 25(4):347-60. PubMed ID: 11120587
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transposon Tn5090 of plasmid R751, which carries an integron, is related to Tn7, Mu, and the retroelements.
    Rådström P; Sköld O; Swedberg G; Flensburg J; Roy PH; Sundström L
    J Bacteriol; 1994 Jun; 176(11):3257-68. PubMed ID: 8195081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of mutations in the C-terminal domain of Mu B on DNA binding and interactions with Mu A transposase.
    Coros CJ; Sekino Y; Baker TA; Chaconas G
    J Biol Chem; 2003 Aug; 278(33):31210-7. PubMed ID: 12791691
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutational analysis of highly conserved aspartate residues essential to the catalytic core of the piggyBac transposase.
    Keith JH; Schaeper CA; Fraser TS; Fraser MJ
    BMC Mol Biol; 2008 Aug; 9():73. PubMed ID: 18694512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemical characterization of a SET and transposase fusion protein, Metnase: its DNA binding and DNA cleavage activity.
    Roman Y; Oshige M; Lee YJ; Goodwin K; Georgiadis MM; Hromas RA; Lee SH
    Biochemistry; 2007 Oct; 46(40):11369-76. PubMed ID: 17877369
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solution structure of the I gamma subdomain of the Mu end DNA-binding domain of phage Mu transposase.
    Clubb RT; Schumacher S; Mizuuchi K; Gronenborn AM; Clore GM
    J Mol Biol; 1997 Oct; 273(1):19-25. PubMed ID: 9367742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The helix-turn-helix motif of bacterial insertion sequence IS911 transposase is required for DNA binding.
    Rousseau P; Gueguen E; Duval-Valentin G; Chandler M
    Nucleic Acids Res; 2004; 32(4):1335-44. PubMed ID: 14981152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.