These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

505 related articles for article (PubMed ID: 9813097)

  • 1. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease.
    Ebneth A; Godemann R; Stamer K; Illenberger S; Trinczek B; Mandelkow E
    J Cell Biol; 1998 Nov; 143(3):777-94. PubMed ID: 9813097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tau inhibits anterograde axonal transport and perturbs stability in growing axonal neurites in part by displacing kinesin cargo: neurofilaments attenuate tau-mediated neurite instability.
    Dubey M; Chaudhury P; Kabiru H; Shea TB
    Cell Motil Cytoskeleton; 2008 Feb; 65(2):89-99. PubMed ID: 18000878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams.
    Chaudhary AR; Berger F; Berger CL; Hendricks AG
    Traffic; 2018 Feb; 19(2):111-121. PubMed ID: 29077261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurotoxic calcium transfer from endoplasmic reticulum to mitochondria is regulated by cyclin-dependent kinase 5-dependent phosphorylation of tau.
    Darios F; Muriel MP; Khondiker ME; Brice A; Ruberg M
    J Neurosci; 2005 Apr; 25(16):4159-68. PubMed ID: 15843619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress.
    Stamer K; Vogel R; Thies E; Mandelkow E; Mandelkow EM
    J Cell Biol; 2002 Mar; 156(6):1051-63. PubMed ID: 11901170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential regulation of dynein and kinesin motor proteins by tau.
    Dixit R; Ross JL; Goldman YE; Holzbaur EL
    Science; 2008 Feb; 319(5866):1086-9. PubMed ID: 18202255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles.
    Trinczek B; Ebneth A; Mandelkow EM; Mandelkow E
    J Cell Sci; 1999 Jul; 112 ( Pt 14)():2355-67. PubMed ID: 10381391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucocorticoid-mediated ER-mitochondria contacts reduce AMPA receptor and mitochondria trafficking into cell terminus via microtubule destabilization.
    Choi GE; Oh JY; Lee HJ; Chae CW; Kim JS; Jung YH; Han HJ
    Cell Death Dis; 2018 Nov; 9(11):1137. PubMed ID: 30429451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic.
    Lippincott-Schwartz J; Cole NB; Marotta A; Conrad PA; Bloom GS
    J Cell Biol; 1995 Feb; 128(3):293-306. PubMed ID: 7844144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of tau phosphorylation by glycogen synthase kinase-3beta in the regulation of organelle transport.
    Tatebayashi Y; Haque N; Tung YC; Iqbal K; Grundke-Iqbal I
    J Cell Sci; 2004 Apr; 117(Pt 9):1653-63. PubMed ID: 15075227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mitochondria cluster at the proximal axon initial segment controls axodendritic TAU trafficking in rodent primary and human iPSC-derived neurons.
    Tjiang N; Zempel H
    Cell Mol Life Sci; 2022 Feb; 79(2):120. PubMed ID: 35119496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapmodulin, cytoplasmic dynein, and microtubules enhance the transport of mannose 6-phosphate receptors from endosomes to the trans-golgi network.
    Itin C; Ulitzur N; Mühlbauer B; Pfeffer SR
    Mol Biol Cell; 1999 Jul; 10(7):2191-7. PubMed ID: 10397758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoregulation of Tau modulates inhibition of kinesin-1 motility.
    Stern JL; Lessard DV; Hoeprich GJ; Morfini GA; Berger CL
    Mol Biol Cell; 2017 Apr; 28(8):1079-1087. PubMed ID: 28251926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mTor mediates tau localization and secretion: Implication for Alzheimer's disease.
    Tang Z; Ioja E; Bereczki E; Hultenby K; Li C; Guan Z; Winblad B; Pei JJ
    Biochim Biophys Acta; 2015 Jul; 1853(7):1646-57. PubMed ID: 25791428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning microtubule-based transport through filamentous MAPs: the problem of dynein.
    Vershinin M; Xu J; Razafsky DS; King SJ; Gross SP
    Traffic; 2008 Jun; 9(6):882-92. PubMed ID: 18373727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport and diffusion of Tau protein in neurons.
    Scholz T; Mandelkow E
    Cell Mol Life Sci; 2014 Aug; 71(16):3139-50. PubMed ID: 24687422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nucleotide-binding state of microtubules modulates kinesin processivity and the ability of Tau to inhibit kinesin-mediated transport.
    McVicker DP; Chrin LR; Berger CL
    J Biol Chem; 2011 Dec; 286(50):42873-80. PubMed ID: 22039058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Export from pericentriolar endocytic recycling compartment to cell surface depends on stable, detyrosinated (glu) microtubules and kinesin.
    Lin SX; Gundersen GG; Maxfield FR
    Mol Biol Cell; 2002 Jan; 13(1):96-109. PubMed ID: 11809825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons.
    Mandelkow EM; Thies E; Trinczek B; Biernat J; Mandelkow E
    J Cell Biol; 2004 Oct; 167(1):99-110. PubMed ID: 15466480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the kinesin KifC3 as a new player for positioning of peroxisomes and other organelles in mammalian cells.
    Dietrich D; Seiler F; Essmann F; Dodt G
    Biochim Biophys Acta; 2013 Dec; 1833(12):3013-3024. PubMed ID: 23954441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.